А. Д. Воробьёв, А. В. Бильдюкевич, Е. В. Воробьёва, С. В. Буча, М. А. Астахова, Artem D. Vorobiev, Academician Alexander, V. Bildyukevich, Elena V. Vorobieva, S. V. Bucha, Marina A. Astahova
{"title":"Effect of the chemical structure of carboxyl-containing polymers on precipitate morphology and carbonate dispersions stability","authors":"А. Д. Воробьёв, А. В. Бильдюкевич, Е. В. Воробьёва, С. В. Буча, М. А. Астахова, Artem D. Vorobiev, Academician Alexander, V. Bildyukevich, Elena V. Vorobieva, S. V. Bucha, Marina A. Astahova","doi":"10.29235/1561-8323-2023-67-2-111-118","DOIUrl":null,"url":null,"abstract":"The influence of the molecular structure of carboxyl-containing polymers on their inhibitory and stabilizing effect in the precipitation processes was studied using a number of polymeric acids with different contents of carboxyl groups (X): polyacrylic acid (Mn = 5100 g-mol–1, X = 61.11 %), polymethacrylic acid (Mn = 5500 g-mol–1, X = 48.79 %), copolymer of methacrylic acid with turpentine terpene (α-pinene) (Mn = 350 g-mol–1, X = 14.54 %). It has been established that polyacid molecules slow down the process of crystal growth and recrystallization of the amorphous phase into more stable crystalline forms, which leads to a change in the morphology and structure of a carbonate precipitate. It has also been shown that polycarboxylic acids increase the colloidal stability of a mixed dispersion of carbonates and kaolin. The synergism of the stabilizing effect of mixtures of different hydrophobicity-polyacids was noted: in the presence of a mixture of polyacrylic acid with a copolymer of methacrylic acid with turpentine terpene, the stabilization effect increases 2 times compared to dispersion without additives and 1.4–1.8 times compared with individual components of the mixture. ","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2023-67-2-111-118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of the molecular structure of carboxyl-containing polymers on their inhibitory and stabilizing effect in the precipitation processes was studied using a number of polymeric acids with different contents of carboxyl groups (X): polyacrylic acid (Mn = 5100 g-mol–1, X = 61.11 %), polymethacrylic acid (Mn = 5500 g-mol–1, X = 48.79 %), copolymer of methacrylic acid with turpentine terpene (α-pinene) (Mn = 350 g-mol–1, X = 14.54 %). It has been established that polyacid molecules slow down the process of crystal growth and recrystallization of the amorphous phase into more stable crystalline forms, which leads to a change in the morphology and structure of a carbonate precipitate. It has also been shown that polycarboxylic acids increase the colloidal stability of a mixed dispersion of carbonates and kaolin. The synergism of the stabilizing effect of mixtures of different hydrophobicity-polyacids was noted: in the presence of a mixture of polyacrylic acid with a copolymer of methacrylic acid with turpentine terpene, the stabilization effect increases 2 times compared to dispersion without additives and 1.4–1.8 times compared with individual components of the mixture.