Bayesian mixture modelling of the high-energy photon counts collected by the Fermi Large Area Telescope

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistical Modelling Pub Date : 2020-09-28 DOI:10.1177/1471082X20947222
D. Costantin, Andrea Sottosanti, A. Brazzale, D. Bastieri, J. Fan
{"title":"Bayesian mixture modelling of the high-energy photon counts collected by the Fermi Large Area Telescope","authors":"D. Costantin, Andrea Sottosanti, A. Brazzale, D. Bastieri, J. Fan","doi":"10.1177/1471082X20947222","DOIUrl":null,"url":null,"abstract":"Identifying as yet undetected high-energy sources in the γ -ray sky is one of the declared objectives of the Fermi Large Area Telescope (LAT) Collaboration. We develop a Bayesian mixture model which is capable of disentangling the high-energy extra-galactic sources present in a given sky region from the pervasive background radiation. We achieve this by combining two model components. The first component models the emission activity of the single sources and incorporates the instrument response function of the Fermi γ -ray space telescope. The second component reliably reflects the current knowledge of the physical phenomena which underlie the γ -ray background. The model parameters are estimated using a reversible jump MCMC algorithm, which simultaneously returns the number of detected sources, their locations and relative intensities, and the background component. Our proposal is illustrated using a sample of the Fermi LAT data. In the analysed sky region, our model correctly identifies 116 sources out of the 132 present. The detection rate and the estimated directions and intensities of the identified sources are largely unaffected by the number of detected sources.","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"22 1","pages":"175 - 198"},"PeriodicalIF":1.2000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1471082X20947222","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X20947222","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

Identifying as yet undetected high-energy sources in the γ -ray sky is one of the declared objectives of the Fermi Large Area Telescope (LAT) Collaboration. We develop a Bayesian mixture model which is capable of disentangling the high-energy extra-galactic sources present in a given sky region from the pervasive background radiation. We achieve this by combining two model components. The first component models the emission activity of the single sources and incorporates the instrument response function of the Fermi γ -ray space telescope. The second component reliably reflects the current knowledge of the physical phenomena which underlie the γ -ray background. The model parameters are estimated using a reversible jump MCMC algorithm, which simultaneously returns the number of detected sources, their locations and relative intensities, and the background component. Our proposal is illustrated using a sample of the Fermi LAT data. In the analysed sky region, our model correctly identifies 116 sources out of the 132 present. The detection rate and the estimated directions and intensities of the identified sources are largely unaffected by the number of detected sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
费米大面积望远镜收集的高能光子计数的贝叶斯混合模型
识别γ射线天空中尚未被发现的高能源是费米大面积望远镜(LAT)合作的宣布目标之一。我们开发了一个贝叶斯混合模型,该模型能够将存在于给定天空区域的高能星系外源与普遍的背景辐射解开。我们通过组合两个模型组件来实现这一点。第一个组件模拟了单个源的发射活动,并结合了费米γ射线空间望远镜的仪器响应函数。第二个分量可靠地反映了γ射线背景下的物理现象的当前知识。使用可逆跳跃MCMC算法估计模型参数,该算法同时返回检测到的源的数量、它们的位置和相对强度以及背景分量。我们的建议是用费米LAT数据的样本来说明的。在分析的天空区域中,我们的模型正确地识别了132个来源中的116个。所识别的源的检测速率以及估计的方向和强度在很大程度上不受检测到的源的数量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Modelling
Statistical Modelling 数学-统计学与概率论
CiteScore
2.20
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.
期刊最新文献
A statistical modelling approach to feedforward neural network model selection The Skellam distribution revisited: Estimating the unobserved incoming and outgoing ICU COVID-19 patients on a regional level in Germany A novel mixture model for characterizing human aiming performance data Fast, effective, and coherent time series modelling using the sparsity-ranked lasso Taking advantage of sampling designs in spatial small-area survey studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1