Energy Density of Three Prosopium Fish Species Endemic to Bear Lake, Utah-Idaho

IF 0.9 4区 环境科学与生态学 Q4 BIODIVERSITY CONSERVATION Journal of Fish and Wildlife Management Pub Date : 2022-12-31 DOI:10.3996/jfwm-22-020
Skylar L. Wolf, Scott Tolentino, Robert C. Shields
{"title":"Energy Density of Three Prosopium Fish Species Endemic to Bear Lake, Utah-Idaho","authors":"Skylar L. Wolf, Scott Tolentino, Robert C. Shields","doi":"10.3996/jfwm-22-020","DOIUrl":null,"url":null,"abstract":"We used bomb calorimetry to quantify the energy density of three fish species endemic to Bear Lake, Utah-Idaho that were collected in 2020 – 2021. We collected Bear Lake Whitefish Prosopium abyssicola , Bonneville Whitefish P. spilonotus , and Bonneville Cisco P. gemmifer . We found that mean (± standard deviation) wet weight energy densities were 6,312 (± 760) joules per gram for Bear Lake Whitefish, 5,301 (± 778) joules per gram for Bonneville Whitefish, and 4,743 (± 443) joules per gram for Bonneville Cisco. We built linear mixed models and found relationships between energy density and dry matter ratio (i.e., ratio of dried weight to wet weight of a fish) for all three species, suggesting that the energy density of future samples collected in Bear Lake could potentially be determined from comparisons between the dried and wet weight of fishes belonging to these species. Our results will be useful for future bioenergetics modeling with these three Bear Lake endemic species, and potentially with others species in related genera that share similar feeding, behavior, and life history traits.","PeriodicalId":49036,"journal":{"name":"Journal of Fish and Wildlife Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fish and Wildlife Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3996/jfwm-22-020","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

We used bomb calorimetry to quantify the energy density of three fish species endemic to Bear Lake, Utah-Idaho that were collected in 2020 – 2021. We collected Bear Lake Whitefish Prosopium abyssicola , Bonneville Whitefish P. spilonotus , and Bonneville Cisco P. gemmifer . We found that mean (± standard deviation) wet weight energy densities were 6,312 (± 760) joules per gram for Bear Lake Whitefish, 5,301 (± 778) joules per gram for Bonneville Whitefish, and 4,743 (± 443) joules per gram for Bonneville Cisco. We built linear mixed models and found relationships between energy density and dry matter ratio (i.e., ratio of dried weight to wet weight of a fish) for all three species, suggesting that the energy density of future samples collected in Bear Lake could potentially be determined from comparisons between the dried and wet weight of fishes belonging to these species. Our results will be useful for future bioenergetics modeling with these three Bear Lake endemic species, and potentially with others species in related genera that share similar feeding, behavior, and life history traits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
犹他州-爱达荷州熊湖特有的三种前鸦片鱼类的能量密度
我们使用炸弹量热法量化了2020 - 2021年收集的犹他州-爱达荷州熊湖特有的三种鱼类的能量密度。我们采集了熊湖白鱼Prosopium abyssicola、Bonneville Whitefish P. spilonotus和Bonneville Cisco P. gemmifer。我们发现熊湖白鱼的平均(±标准差)湿重能量密度为6312(±760)焦耳/克,博纳维尔白鱼为5301(±778)焦耳/克,博纳维尔思科为4743(±443)焦耳/克。我们建立了线性混合模型,并发现了所有三种鱼类的能量密度与干物质比(即鱼的干重与湿重之比)之间的关系,这表明未来在熊湖收集的样本的能量密度可能会通过比较属于这些物种的鱼的干重和湿重来确定。我们的研究结果将有助于未来对这三种熊湖特有物种的生物能量学建模,以及对具有相似摄食、行为和生活史特征的其他相关属物种的生物能量学建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fish and Wildlife Management
Journal of Fish and Wildlife Management BIODIVERSITY CONSERVATION-ECOLOGY
CiteScore
1.60
自引率
0.00%
发文量
43
审稿时长
>12 weeks
期刊介绍: Journal of Fish and Wildlife Management encourages submission of original, high quality, English-language scientific papers on the practical application and integration of science to conservation and management of native North American fish, wildlife, plants and their habitats in the following categories: Articles, Notes, Surveys and Issues and Perspectives. Papers that do not relate directly to native North American fish, wildlife plants or their habitats may be considered if they highlight species that are closely related to, or conservation issues that are germane to, those in North America.
期刊最新文献
Strangers in the blind: Identifying appropriate mentees and mentors for waterfowl hunter recruitment Simulation Modeling to Assess Line Transect Distance Sampling Under a Range of Translocation Scenarios Sampling duration and season recommendations for passive acoustic monitoring of bats after white-nose syndrome Striped Bass Morone saxatilis movement in a large southeastern river system Leveraging Angler Effort to Inform Fisheries Management: Using Harvest and Harvest Rate to Estimate Abundance of White Sturgeon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1