Solid and Liquid Oxygen under Ultrahigh Magnetic Fields

T. Nomura, Y. Matsuda, Tatsuo C. Kobayashi
{"title":"Solid and Liquid Oxygen under Ultrahigh Magnetic Fields","authors":"T. Nomura, Y. Matsuda, Tatsuo C. Kobayashi","doi":"10.3390/oxygen2020013","DOIUrl":null,"url":null,"abstract":"Oxygen is a unique molecule that possesses a spin quantum number S=1. In the condensed phases of oxygen, the delicate balance between the antiferromagnetic interaction and van der Waals force results in the various phases with different crystal structures. By applying ultrahigh magnetic fields, the antiferromagnetic coupling between O2 molecules breaks, and novel high-field phases can appear. We have investigated the physical properties of condensed oxygen under ultrahigh magnetic fields and have found that the stable crystal structure of solid oxygen changes around 100 T. Even in liquid oxygen, we observed a strong acoustic attenuation, which indicates the fluctuation of local molecular arrangements. These results demonstrate that magnetic fields can modulate the packing structure of oxygen through spin-lattice coupling. Our study implies the possibility of controlling oxygen-related (bio-)chemical processes by using an external magnetic field.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxygen (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oxygen2020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen is a unique molecule that possesses a spin quantum number S=1. In the condensed phases of oxygen, the delicate balance between the antiferromagnetic interaction and van der Waals force results in the various phases with different crystal structures. By applying ultrahigh magnetic fields, the antiferromagnetic coupling between O2 molecules breaks, and novel high-field phases can appear. We have investigated the physical properties of condensed oxygen under ultrahigh magnetic fields and have found that the stable crystal structure of solid oxygen changes around 100 T. Even in liquid oxygen, we observed a strong acoustic attenuation, which indicates the fluctuation of local molecular arrangements. These results demonstrate that magnetic fields can modulate the packing structure of oxygen through spin-lattice coupling. Our study implies the possibility of controlling oxygen-related (bio-)chemical processes by using an external magnetic field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超高磁场下的固态和液态氧
氧是一种独特的分子,其自旋量子数S=1。在氧的凝聚相中,反铁磁相互作用和范德华力之间的微妙平衡导致了具有不同晶体结构的各种相。通过施加超高磁场,O2分子之间的反铁磁耦合断裂,可以出现新的高场相。我们研究了凝聚态氧在超高磁场下的物理性质,发现固态氧的稳定晶体结构在100T左右发生变化。即使在液态氧中,我们也观察到强烈的声衰减,这表明局部分子排列的波动。这些结果表明,磁场可以通过自旋-晶格耦合调节氧的堆积结构。我们的研究暗示了通过使用外部磁场来控制与氧相关的(生物)化学过程的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hypoxia in uterine fibroids: role in pathobiology and therapeutic opportunities. Mitochondrial Dysfunction and Nanocarrier-Based Treatments in Chronic Obstructive Pulmonary Disease (COPD) The Influence of the Atmospheric Electric Field on Soil Redox Potential The Kelch/Nrf2 Antioxidant System as a Target for Some Marine Fungal Metabolites Exploring the Impact of Training Methods on Repeated Sprints in Hypoxia Training Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1