Evaluation of Unmanned Aerial Vehicles Cooperative Combat Effectiveness Based on Conditional Entropy Combination Weight Method

IF 0.9 Q3 ENGINEERING, AEROSPACE Journal of Aerospace Technology and Management Pub Date : 2021-08-11 DOI:10.1590/jatm.v13.1227
Lifan Sun, Jiashun Chang, Jinjin Zhang, Zhumu Fu, Jie Zou
{"title":"Evaluation of Unmanned Aerial Vehicles Cooperative Combat Effectiveness Based on Conditional Entropy Combination Weight Method","authors":"Lifan Sun, Jiashun Chang, Jinjin Zhang, Zhumu Fu, Jie Zou","doi":"10.1590/jatm.v13.1227","DOIUrl":null,"url":null,"abstract":"For evaluating the cooperative combat effectiveness of unmanned aerial vehicles (UAVs), traditional entropy methods have an undue weight coefficient of the index due to its high degree of dispersion, and the interrelationship between the indices are not considered. To deal with this problem, this paper proposes a conditional entropy combination weighting method for evaluating the cooperative combat effectiveness of UAVs. Firstly, with the aim of establishing the UAV cooperative combat index system, the modified Delphi method has been combined with analytic hierarchy process (AHP) and interval estimation. This method has been used for estimating the degree of contribution of each index and to remove the indices that have a low contribution. Secondly, the principle of conditional entropy has been introduced for modifying the entropy method with the consideration of the interrelation between the indices. Finally, the modified entropy and AHP have been combined to assign the final weight in the UAV cooperative combat system. Testing results demonstrate that the index system established by this method is more comprehensive and reasonable as compared to that established by the traditional Delphi method. Compared with the single weighted method, this method is more suitable for the evaluation system of UAVs cooperative combat effectiveness.","PeriodicalId":14872,"journal":{"name":"Journal of Aerospace Technology and Management","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Technology and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/jatm.v13.1227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

For evaluating the cooperative combat effectiveness of unmanned aerial vehicles (UAVs), traditional entropy methods have an undue weight coefficient of the index due to its high degree of dispersion, and the interrelationship between the indices are not considered. To deal with this problem, this paper proposes a conditional entropy combination weighting method for evaluating the cooperative combat effectiveness of UAVs. Firstly, with the aim of establishing the UAV cooperative combat index system, the modified Delphi method has been combined with analytic hierarchy process (AHP) and interval estimation. This method has been used for estimating the degree of contribution of each index and to remove the indices that have a low contribution. Secondly, the principle of conditional entropy has been introduced for modifying the entropy method with the consideration of the interrelation between the indices. Finally, the modified entropy and AHP have been combined to assign the final weight in the UAV cooperative combat system. Testing results demonstrate that the index system established by this method is more comprehensive and reasonable as compared to that established by the traditional Delphi method. Compared with the single weighted method, this method is more suitable for the evaluation system of UAVs cooperative combat effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于条件熵组合权法的无人机协同作战效能评估
在评估无人机协同作战效能时,传统的熵方法由于其高度分散性,使指标的权重系数过大,并且没有考虑指标之间的相互关系。针对这一问题,本文提出了一种评估无人机协同作战效能的条件熵组合加权方法。首先,为了建立无人机协同作战指标体系,将改进的德尔菲法与层次分析法(AHP)和区间估计相结合。该方法已用于估计每个指数的贡献程度,并用于去除贡献较低的指数。其次,引入条件熵的原理,考虑指标之间的相互关系,对熵法进行了修正。最后,将修正熵和AHP相结合,对无人机协同作战系统进行了最终权重分配。测试结果表明,与传统的德尔菲方法相比,该方法建立的指标体系更加全面合理。与单加权法相比,该方法更适合于无人机协同作战效能的评估体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
16
审稿时长
20 weeks
期刊最新文献
Influence of 2D and 3D Arrangements of Aramid Fibers on the Dart Drop Test of Epoxy Composites Smart Cabin Design Concept for Regional Aircraft: Challenges, Future Aspects & Requirements Smart Cabin Design Concept for Regional Aircraft: Technologies, Applications & Architecture Formation of a Regionally Oriented Structure and Number of the Airline’s Helicopter Fleet Based on Consumer Preferences of Customers Indirect Connection Analysis Based on Wave-system Structures of Airlines Architecture in Hub Airport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1