Validating the Applicability of Bayesian Inference with Surname and Geocoding to Congressional Redistricting

IF 4.7 2区 社会学 Q1 POLITICAL SCIENCE Political Analysis Pub Date : 2022-05-20 DOI:10.1017/pan.2022.14
K. DeLuca, John A. Curiel
{"title":"Validating the Applicability of Bayesian Inference with Surname and Geocoding to Congressional Redistricting","authors":"K. DeLuca, John A. Curiel","doi":"10.1017/pan.2022.14","DOIUrl":null,"url":null,"abstract":"Abstract Ensuring descriptive representation of racial minorities without packing minorities too heavily into districts is a perpetual difficulty, especially in states lacking voter file race data. One advance since the 2010 redistricting cycle is the advent of Bayesian Improved Surname Geocoding (BISG), which greatly improves upon previous ecological inference methods in identifying voter race. In this article, we test the viability of employing BISG to redistricting under two posterior allocation methods for race assignment: plurality versus probabilistic. We validate these methods through 10,000 redistricting simulations of North Carolina and Georgia’s congressional districts and compare BISG estimates to actual voter file racial data. We find that probabilistic summing of the BISG posteriors significantly reduces error rates at the precinct and district level relative to plurality racial assignment, and therefore should be the preferred method when using BISG for redistricting. Our results suggest that BISG can aid in the construction of majority-minority districts during the redistricting process.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"31 1","pages":"465 - 471"},"PeriodicalIF":4.7000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2022.14","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract Ensuring descriptive representation of racial minorities without packing minorities too heavily into districts is a perpetual difficulty, especially in states lacking voter file race data. One advance since the 2010 redistricting cycle is the advent of Bayesian Improved Surname Geocoding (BISG), which greatly improves upon previous ecological inference methods in identifying voter race. In this article, we test the viability of employing BISG to redistricting under two posterior allocation methods for race assignment: plurality versus probabilistic. We validate these methods through 10,000 redistricting simulations of North Carolina and Georgia’s congressional districts and compare BISG estimates to actual voter file racial data. We find that probabilistic summing of the BISG posteriors significantly reduces error rates at the precinct and district level relative to plurality racial assignment, and therefore should be the preferred method when using BISG for redistricting. Our results suggest that BISG can aid in the construction of majority-minority districts during the redistricting process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于姓氏和地理编码的贝叶斯推理在国会选区划分中的适用性验证
确保少数族裔的代表性,同时又不将少数族裔过多地集中在选区中,是一个永恒的难题,尤其是在缺乏选民档案种族数据的州。自2010年重新划分周期以来的一个进步是贝叶斯改进姓氏地理编码(BISG)的出现,它在识别选民种族方面大大改进了以前的生态推断方法。在本文中,我们测试了在两种种族分配的后验分配方法下使用BISG重新划分的可行性:多数与概率。我们通过对北卡罗莱纳和乔治亚州国会选区的10,000次重新划分模拟来验证这些方法,并将BISG的估计与实际选民档案中的种族数据进行比较。我们发现,相对于多元种族分配,BISG后验的概率求和显著降低了选区和地区层面的错误率,因此应该是使用BISG进行选区重划的首选方法。结果表明,在选区重划过程中,BISG对少数民族地区的建设具有一定的辅助作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Political Analysis
Political Analysis POLITICAL SCIENCE-
CiteScore
8.80
自引率
3.70%
发文量
30
期刊介绍: Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.
期刊最新文献
Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study. On Finetuning Large Language Models Explaining Recruitment to Extremism: A Bayesian Hierarchical Case–Control Approach Implementation Matters: Evaluating the Proportional Hazard Test’s Performance Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1