Key Physical Processes in the Circumgalactic Medium

IF 26.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Annual Review of Astronomy and Astrophysics Pub Date : 2023-01-24 DOI:10.1146/annurev-astro-052920-125203
C. Faucher-Giguère, S. Oh
{"title":"Key Physical Processes in the Circumgalactic Medium","authors":"C. Faucher-Giguère, S. Oh","doi":"10.1146/annurev-astro-052920-125203","DOIUrl":null,"url":null,"abstract":"Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following: ▪ The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( T ∼ 104 K) when cooling is rapid. ▪ Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. ▪ In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds. ▪ Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":" ","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-astro-052920-125203","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 7

Abstract

Spurred by rich, multiwavelength observations and enabled by new simulations, ranging from cosmological to subparsec scales, the past decade has seen major theoretical progress in our understanding of the circumgalactic medium (CGM). We review key physical processes in the CGM. Our conclusions include the following: ▪ The properties of the CGM depend on a competition between gravity-driven infall and gas cooling. When cooling is slow relative to free fall, the gas is hot (roughly virial temperature), whereas the gas is cold ( T ∼ 104 K) when cooling is rapid. ▪ Gas inflows and outflows play crucial roles, as does the cosmological environment. Large-scale structure collimates cold streams and provides angular momentum. Satellite galaxies contribute to the CGM through winds and gas stripping. ▪ In multiphase gas, the hot and cold phases continuously exchange mass, energy, and momentum. The interaction between turbulent mixing and radiative cooling is critical. A broad spectrum of cold gas structures, going down to subparsec scales, arises from fragmentation, coagulation, and condensation onto gas clouds. ▪ Magnetic fields, thermal conduction, and cosmic rays can substantially modify how the cold and hot phases interact, although microphysical uncertainties are presently large. Key open questions for future work include the mutual interplay between small-scale structure and large-scale dynamics, and how the CGM affects the evolution of galaxies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环星系介质中的关键物理过程
在丰富的多波长观测的推动下,再加上从宇宙学到亚物理尺度的新模拟,在过去的十年里,我们对银河系介质(CGM)的理解取得了重大的理论进展。我们回顾了CGM中的关键物理过程。我们的结论如下:▪ CGM的特性取决于重力驱动的进气和气体冷却之间的竞争。当冷却相对于自由落体缓慢时,气体是热的(大致为病毒温度),而当冷却快速时,气体则是冷的(T~104 K)。▪ 气体的流入和流出起着至关重要的作用,宇宙学环境也是如此。大型结构使冷流准直并提供角动量。卫星星系通过风和气体剥离对CGM做出贡献。▪ 在多相气体中,热相和冷相连续地交换质量、能量和动量。湍流混合和辐射冷却之间的相互作用至关重要。广泛的冷气体结构,向下到亚粒子尺度,产生于气体云上的碎裂、凝结和凝结。▪ 磁场、热传导和宇宙射线可以极大地改变冷相和热相的相互作用方式,尽管目前微观物理的不确定性很大。未来工作的关键未决问题包括小尺度结构和大尺度动力学之间的相互作用,以及CGM如何影响星系的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Astronomy and Astrophysics
Annual Review of Astronomy and Astrophysics 地学天文-天文与天体物理
CiteScore
54.80
自引率
0.60%
发文量
14
期刊介绍: The Annual Review of Astronomy and Astrophysics is covers significant developments in the field of astronomy and astrophysics including:The Sun,Solar system and extrasolar planets,Stars,Interstellar medium,Galaxy and galaxies,Active galactic nuclei,Cosmology,Instrumentation and techniques, History of the development of new areas of research.
期刊最新文献
The Star–Planet Composition Connection Solar Flare Spectroscopy Theory and Observation of Winds from Star-Forming Galaxies A Tale of Many H0 Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1