首页 > 最新文献

Annual Review of Astronomy and Astrophysics最新文献

英文 中文
The Star–Planet Composition Connection 恒星与行星构成的联系
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-13 DOI: 10.1146/annurev-astro-071221-053007
Johanna K. Teske
The mantra “know thy star, know thy planet” has proven to be very important for many aspects of exoplanet science. Here I review how stellar abundances inform our understanding of planet composition and, thus, formation and evolution. In particular, I discuss how: ▪ The strongest star–planet connection is still the giant planet–metallicity correlation, the strength of which may indicate a break point between the formation of planets versus brown dwarfs. ▪ We do not have very good constraints on the lower metallicity limit for planet formation, although new statistics from TESS are helping, and it appears that, at low [Fe/H], α elements can substitute for iron as seeds for planet formation. ▪ The depletion of refractory versus volatile elements in stellar photospheres (particularly the Sun) was initially suggested as a sign of small planet formation but is challenging to interpret, and small differences in binary star compositions can be attributed mostly to processes other than planet formation. ▪ We can and should go beyond comparisons of the carbon-to-oxygen ratio in giant planets and their host stars, incorporating other volatile and refractory species to better constrain planet formation pathways. ▪ There appears to be a positive correlation between small planet bulk density and host star metallicity, but exactly how closely small planet refractory compositions match those of their host stars—and their true diversity—is still uncertain.
事实证明,"了解恒星,了解行星 "这句口号对于系外行星科学的许多方面都非常重要。在此,我将回顾恒星丰度如何帮助我们了解行星的组成,进而了解行星的形成和演化。我将特别讨论恒星-行星之间最紧密的联系仍然是巨行星-金属性相关性,其强度可能表明行星形成与褐矮星形成之间的断裂点。我们对行星形成的金属性下限并没有很好的约束,尽管 TESS 的新统计数据正在提供帮助,而且在低[Fe/H]时,α 元素似乎可以替代铁元素成为行星形成的种子。恒星光球(尤其是太阳)中难熔元素相对于挥发性元素的损耗最初被认为是小行星形成的标志,但解释起来很困难,双星成分的微小差异大多可以归因于行星形成以外的过程。我们可以而且应该超越对巨行星及其宿主恒星中碳氧比例的比较,将其他挥发性和难熔物质纳入其中,以更好地制约行星的形成路径。小行星的体积密度与寄主恒星的金属性之间似乎存在正相关,但小行星的难熔物成分与其寄主恒星的难熔物成分--以及它们的真正多样性--之间的匹配程度究竟有多接近,目前仍不确定。
{"title":"The Star–Planet Composition Connection","authors":"Johanna K. Teske","doi":"10.1146/annurev-astro-071221-053007","DOIUrl":"https://doi.org/10.1146/annurev-astro-071221-053007","url":null,"abstract":"The mantra “know thy star, know thy planet” has proven to be very important for many aspects of exoplanet science. Here I review how stellar abundances inform our understanding of planet composition and, thus, formation and evolution. In particular, I discuss how: ▪ The strongest star–planet connection is still the giant planet–metallicity correlation, the strength of which may indicate a break point between the formation of planets versus brown dwarfs. ▪ We do not have very good constraints on the lower metallicity limit for planet formation, although new statistics from TESS are helping, and it appears that, at low [Fe/H], α elements can substitute for iron as seeds for planet formation. ▪ The depletion of refractory versus volatile elements in stellar photospheres (particularly the Sun) was initially suggested as a sign of small planet formation but is challenging to interpret, and small differences in binary star compositions can be attributed mostly to processes other than planet formation. ▪ We can and should go beyond comparisons of the carbon-to-oxygen ratio in giant planets and their host stars, incorporating other volatile and refractory species to better constrain planet formation pathways. ▪ There appears to be a positive correlation between small planet bulk density and host star metallicity, but exactly how closely small planet refractory compositions match those of their host stars—and their true diversity—is still uncertain.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"63 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solar Flare Spectroscopy 太阳耀斑光谱学
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-09-13 DOI: 10.1146/annurev-astro-052920-010547
Lyndsay Fletcher
This review covers the techniques, observations, and inferences of solar flare spectroscopy. It is not a spectroscopist's view of solar flares but rather a solar flare physicist's view of spectroscopy. Spectroscopy is carried out across the electromagnetic spectrum, but this review emphasizes the optical to soft X-ray part of the spectrum and discusses results from spectroscopy applied to the preflare, impulsive, and gradual phases, as well as a few highlights from modeling. ▪ The main spectroscopic signatures of the preflare phase are line broadening in optically thin ultraviolet to soft X-ray lines and small Doppler shifts in active region filaments that are becoming unstable. ▪ In the impulsive phase, fast upflows of heated plasma into the corona and slow downflows of cooler chromospheric plasma take place at the sites of strong chromospheric energy deposition. ▪ Radiation-hydrodynamic modeling of optically thick spectral lines gives a picture of an impulsive-phase chromosphere with a dense, heated layer deep in the atmosphere and an overlying, downward moving condensation that is partially optically thin. ▪ Gradual-phase observations show us the heated coronal plasma cooling and draining but also provide evidence for ongoing slow energy input and slow upflows in other locations. ▪ Interesting hints of non-Maxwellian and nonequilibrium plasmas have been found, along with possible evidence of plasma turbulence from line broadening.
这篇综述涵盖了太阳耀斑光谱学的技术、观测和推论。这不是光谱学家对太阳耀斑的看法,而是太阳耀斑物理学家对光谱学的看法。光谱学是在整个电磁波谱中进行的,但本综述强调光谱中的光学到软 X 射线部分,并讨论了应用于耀斑前、脉冲和渐变阶段的光谱学结果,以及建模中的一些亮点。预辉阶段的主要光谱特征是光学薄紫外线到软 X 射线的线宽,以及正在变得不稳定的活动区细丝的小多普勒偏移。在脉冲阶段,在色球层能量强沉积的位置,加热的等离子体快速上流向日冕,较冷的色球层等离子体缓慢下流。光学厚谱线的辐射-流体动力学模型给出了一幅冲动相色球的图景,大气深处有一个致密的受热层,上覆的向下运动的凝结层部分是光学薄层。渐变相观测向我们展示了受热日冕等离子体的冷却和排水过程,但也提供了其他位置持续缓慢的能量输入和缓慢上溢的证据。发现了非麦克斯韦等离子体和非平衡等离子体的有趣迹象,以及等离子体湍流的可能证据。
{"title":"Solar Flare Spectroscopy","authors":"Lyndsay Fletcher","doi":"10.1146/annurev-astro-052920-010547","DOIUrl":"https://doi.org/10.1146/annurev-astro-052920-010547","url":null,"abstract":"This review covers the techniques, observations, and inferences of solar flare spectroscopy. It is not a spectroscopist's view of solar flares but rather a solar flare physicist's view of spectroscopy. Spectroscopy is carried out across the electromagnetic spectrum, but this review emphasizes the optical to soft X-ray part of the spectrum and discusses results from spectroscopy applied to the preflare, impulsive, and gradual phases, as well as a few highlights from modeling. ▪ The main spectroscopic signatures of the preflare phase are line broadening in optically thin ultraviolet to soft X-ray lines and small Doppler shifts in active region filaments that are becoming unstable. ▪ In the impulsive phase, fast upflows of heated plasma into the corona and slow downflows of cooler chromospheric plasma take place at the sites of strong chromospheric energy deposition. ▪ Radiation-hydrodynamic modeling of optically thick spectral lines gives a picture of an impulsive-phase chromosphere with a dense, heated layer deep in the atmosphere and an overlying, downward moving condensation that is partially optically thin. ▪ Gradual-phase observations show us the heated coronal plasma cooling and draining but also provide evidence for ongoing slow energy input and slow upflows in other locations. ▪ Interesting hints of non-Maxwellian and nonequilibrium plasmas have been found, along with possible evidence of plasma turbulence from line broadening.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"3 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Tale of Many H0 许多 H0 的故事
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-23 DOI: 10.1146/annurev-astro-052622-033813
Licia Verde, Nils Schöneberg, Héctor Gil-Marín
▪The Hubble parameter, H0, is not an univocally defined quantity: It relates redshifts to distances in the near Universe, but it is also a key parameter of the ΛCDM standard cosmological model. As such, H0 affects several physical processes at different cosmic epochs and multiple observables. We have counted more than a dozen H0s that are expected to agree if (a) there are no significant systematics in the data and their interpretation and (b) the adopted cosmological model is correct.▪With few exceptions (proverbially confirming the rule), these determinations do not agree at high statistical significance; their values cluster around two camps: the low (68 km s1 Mpc1) and high (73 km s1 Mpc1) camps. It appears to be a matter of anchors. The shape of the Universe expansion history agrees with the model; it is the normalizations that disagree.▪Beyond systematics in the data/analysis, if the model is incorrect, there are only two viable ways to “fix” it: by changing the early time (z ≳ 1,100) physics and, thus, the early time normalization or by a global modification, possibly touching the model's fundamental assumptions (e.g., homogeneity, isotropy, gravity). None of these three options has the consensus of the community.▪The research community has been actively looking for deviations from ΛCDM for two decades; the one we might have found makes us wish we could put the genie back in the bottle.
哈勃参数 H0 并不是一个统一定义的量:它关系到近宇宙的红移和距离,同时也是ΛCDM 标准宇宙学模型的一个关键参数。因此,H0 影响着不同宇宙纪元的多个物理过程和多个观测指标。我们统计了十几个 H0,如果(a)数据及其解释没有明显的系统性;(b)所采用的宇宙学模型是正确的,那么这些 H0 是一致的。这似乎是一个锚的问题。除了数据/分析的系统性之外,如果模型不正确,只有两种可行的 "修正 "方法:改变早期时间(z ≳ 1,100)的物理学,从而改变早期时间的归一化;或者进行全局性的修改,可能会触及模型的基本假设(如均质性、各向同性、引力)。研究界二十年来一直在积极寻找与ΛCDM的偏差;我们可能发现的偏差让我们希望能把精灵放回瓶子里。
{"title":"A Tale of Many H0","authors":"Licia Verde, Nils Schöneberg, Héctor Gil-Marín","doi":"10.1146/annurev-astro-052622-033813","DOIUrl":"https://doi.org/10.1146/annurev-astro-052622-033813","url":null,"abstract":"▪The Hubble parameter, H0, is not an univocally defined quantity: It relates redshifts to distances in the near Universe, but it is also a key parameter of the ΛCDM standard cosmological model. As such, H0 affects several physical processes at different cosmic epochs and multiple observables. We have counted more than a dozen H0s that are expected to agree if (a) there are no significant systematics in the data and their interpretation and (b) the adopted cosmological model is correct.▪With few exceptions (proverbially confirming the rule), these determinations do not agree at high statistical significance; their values cluster around two camps: the low (68 km s1 Mpc1) and high (73 km s1 Mpc1) camps. It appears to be a matter of anchors. The shape of the Universe expansion history agrees with the model; it is the normalizations that disagree.▪Beyond systematics in the data/analysis, if the model is incorrect, there are only two viable ways to “fix” it: by changing the early time (z ≳ 1,100) physics and, thus, the early time normalization or by a global modification, possibly touching the model's fundamental assumptions (e.g., homogeneity, isotropy, gravity). None of these three options has the consensus of the community.▪The research community has been actively looking for deviations from ΛCDM for two decades; the one we might have found makes us wish we could put the genie back in the bottle.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"43 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory and Observation of Winds from Star-Forming Galaxies 恒星形成星系风的理论与观测
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-23 DOI: 10.1146/annurev-astro-041224-011924
Todd A. Thompson, Timothy M. Heckman
Galactic winds shape the stellar, gas, and metal content of galaxies. To quantify their impact, we must understand their physics. We review potential wind-driving mechanisms and observed wind properties, with a focus on the warm ionized and hot X-ray-emitting gas. Energy and momentum injection by supernovae (SNe), cosmic rays, radiation pressure, and magnetic fields are considered in the light of observations:▪Emission and absorption line measurements of cool/warm gas provide our best physical diagnostics of galactic outflows.▪The critical unsolved problem is how to accelerate cool gas to the high velocities observed. Although conclusive evidence for no one mechanism exists, the momentum, energy, and mass-loading budgets observed compare well with theory.▪A model in which star formation provides a force ∼L/c, where L is the bolometric luminosity, and cool gas is pushed out of the galaxy's gravitational potential, compares well with available data. The wind power is ∼0.1 of that provided by SNe.▪The very hot X-ray-emitting phase may be a (or the) prime mover. Momentum and energy exchange between the hot and cooler phases is critical to the gas dynamics.▪Gaps in our observational knowledge include the hot gas kinematics and the size and structure of the outflows probed with UV absorption lines.Simulations are needed to more fully understand mixing, cloud–radiation, cloud–cosmic ray, andcloud–hot wind interactions, the collective effects of star clusters, and both distributed andclustered SNe. Observational works should seek secondary correlations in the wind data thatprovide evidence for specific mechanisms and compare spectroscopy with the column density–velocity results from theory.
星系风决定了星系中恒星、气体和金属的含量。为了量化它们的影响,我们必须了解它们的物理特性。我们回顾了潜在的风驱动机制和观测到的风属性,重点是暖电离气体和发射X射线的热气体。关键的未决问题是如何将冷气体加速到观测到的高速度。在这个模型中,恒星形成提供了 ∼L/c(其中 L 是测光光度)的力量,冷气体被推出星系的引力势能,这与现有数据比较吻合。极热的 X 射线发光相可能是(或主要)推动力。我们观测知识中的空白包括热气体运动学以及用紫外线吸收线探测的流出物的大小和结构。需要进行模拟,以便更全面地了解混合、云辐射、云-宇宙射线和云-热风的相互作用、星团的集体效应以及分布式和星团式SNE。观测工作应该在风数据中寻找次要相关性,为特定机制提供证据,并将光谱与理论得出的柱密度-速度结果进行比较。
{"title":"Theory and Observation of Winds from Star-Forming Galaxies","authors":"Todd A. Thompson, Timothy M. Heckman","doi":"10.1146/annurev-astro-041224-011924","DOIUrl":"https://doi.org/10.1146/annurev-astro-041224-011924","url":null,"abstract":"Galactic winds shape the stellar, gas, and metal content of galaxies. To quantify their impact, we must understand their physics. We review potential wind-driving mechanisms and observed wind properties, with a focus on the warm ionized and hot X-ray-emitting gas. Energy and momentum injection by supernovae (SNe), cosmic rays, radiation pressure, and magnetic fields are considered in the light of observations:▪Emission and absorption line measurements of cool/warm gas provide our best physical diagnostics of galactic outflows.▪The critical unsolved problem is how to accelerate cool gas to the high velocities observed. Although conclusive evidence for no one mechanism exists, the momentum, energy, and mass-loading budgets observed compare well with theory.▪A model in which star formation provides a force ∼L/c, where L is the bolometric luminosity, and cool gas is pushed out of the galaxy's gravitational potential, compares well with available data. The wind power is ∼0.1 of that provided by SNe.▪The very hot X-ray-emitting phase may be a (or the) prime mover. Momentum and energy exchange between the hot and cooler phases is critical to the gas dynamics.▪Gaps in our observational knowledge include the hot gas kinematics and the size and structure of the outflows probed with UV absorption lines.Simulations are needed to more fully understand mixing, cloud–radiation, cloud–cosmic ray, andcloud–hot wind interactions, the collective effects of star clusters, and both distributed andclustered SNe. Observational works should seek secondary correlations in the wind data thatprovide evidence for specific mechanisms and compare spectroscopy with the column density–velocity results from theory.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"13 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141755177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies 近邻星系云尺度上的分子气体和恒星形成过程
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-03 DOI: 10.1146/annurev-astro-071221-052651
E. Schinnerer, A.K. Leroy
Observations that resolve nearby galaxies into individual regions across multiple phases of the gas–star formation feedback “matter cycle” have provided a sharp new view of molecular clouds, star-formation efficiencies, timescales for region evolution, and stellar feedback. We synthesize these results, covering aspects relevant to the interpretation of observables, and conclude the following: The observed cloud-scale molecular gas surface density, line width, and internal pressure all reflect the large-scale galactic environment while also appearing mostly consistent with properties of a turbulent medium strongly affected by self-gravity. Cloud-scale data allow for statistical inference of both evolutionary and physical timescales. These suggest a period of cloud collapse on the order of the free-fall or turbulent crossing time (∼10–30 Myr) followed by forming massive stars and subsequent rapid (≲5 Myr) gas clearing after the onset of star formation. The star-formation efficiency per free-fall time is well determined over thousands of individual regions at εff ≈ 0.5−0.3 +0.7%. The role of stellar feedback is now measured using multiple observational approaches. The net yield is constrained by the requirement to support the vertical weight of the galaxy disk. Meanwhile, the short gas-clearing timescales suggest a large role for presupernova feedback in cloud disruption. This leaves the supernovae free to exert a large influence on the larger galaxy, including stirring turbulence, launching galactic-scale winds, and carving superbubbles.
在气体-恒星形成反馈 "物质循环 "的多个阶段,将邻近星系分解为单个区域的观测结果,为我们提供了一个关于分子云、恒星形成效率、区域演化时间尺度和恒星反馈的全新视角。我们综合了这些结果,涵盖了与解释观测数据相关的方面,并得出以下结论: 观测到的云尺度分子气体表面密度、线宽和内压都反映了大尺度星系环境,同时也与受自重力影响很大的湍流介质的特性基本一致。 云尺度数据允许对演化和物理时间尺度进行统计推断。这些数据表明,在形成大质量恒星之后,会有一段与自由落体或湍流穿越时间(∼10-30 Myr)相当的云坍缩期,随后恒星开始形成,气体迅速清除(∼5 Myr)。在数千个区域中,每个自由落体时间的恒星形成效率被很好地确定为 εff ≈ 0.5-0.3 +0.7%。 现在可以利用多种观测方法测量恒星反馈的作用。净产量受制于支撑星系盘垂直重量的要求。同时,较短的气体清除时间尺度表明,前超新星反馈在云破坏中起着很大的作用。这使得超新星可以自由地对更大的星系施加巨大影响,包括搅动湍流、引发星系尺度的风和切割超级气泡。
{"title":"Molecular Gas and the Star-Formation Process on Cloud Scales in Nearby Galaxies","authors":"E. Schinnerer, A.K. Leroy","doi":"10.1146/annurev-astro-071221-052651","DOIUrl":"https://doi.org/10.1146/annurev-astro-071221-052651","url":null,"abstract":"Observations that resolve nearby galaxies into individual regions across multiple phases of the gas–star formation feedback “matter cycle” have provided a sharp new view of molecular clouds, star-formation efficiencies, timescales for region evolution, and stellar feedback. We synthesize these results, covering aspects relevant to the interpretation of observables, and conclude the following: <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> The observed cloud-scale molecular gas surface density, line width, and internal pressure all reflect the large-scale galactic environment while also appearing mostly consistent with properties of a turbulent medium strongly affected by self-gravity. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Cloud-scale data allow for statistical inference of both evolutionary and physical timescales. These suggest a period of cloud collapse on the order of the free-fall or turbulent crossing time (∼10–30 Myr) followed by forming massive stars and subsequent rapid (≲5 Myr) gas clearing after the onset of star formation. The star-formation efficiency per free-fall time is well determined over thousands of individual regions at ε<jats:sub>ff</jats:sub> ≈ 0.5<jats:sub>−0.3</jats:sub> <jats:sup>+0.7</jats:sup>%. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The role of stellar feedback is now measured using multiple observational approaches. The net yield is constrained by the requirement to support the vertical weight of the galaxy disk. Meanwhile, the short gas-clearing timescales suggest a large role for presupernova feedback in cloud disruption. This leaves the supernovae free to exert a large influence on the larger galaxy, including stirring turbulence, launching galactic-scale winds, and carving superbubbles. </jats:list-item> </jats:list>","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"31 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141521946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Character of M Dwarfs M 矮人的特性
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-07-01 DOI: 10.1146/annurev-astro-052722-102740
Todd J. Henry, Wei-Chun Jao
M dwarfs dominate the stellar population, accounting for three of every four stars, the nearest of which is Proxima Centauri, the closest destination beyond our Solar System. These cool stars span large ranges in luminosities (one ten-thousandth to 6% L) and temperatures (2,100–3,900 K) and have spectra dominated by absorption bands of titanium oxide (TiO) and, for the latest spectral types, vanadium oxide (VO). They have masses that span 0.075 to 0.61 M, a factor of eight, which is comparable with a spread in masses for dwarf types mid-B through K. Unlike these more massive stars, in the age of the Universe no M dwarfs have evolved in any significant way. M dwarf systems are multiple roughly one-quarter of the time, with the closest binaries found in orbits that have been circularized via tides for orbital periods of about one week. Unlike any other type of main sequence star, there is a gap in the distribution of M dwarfs near masses of 0.35 M that pinpoints the separation of partially and fully convective stars, yet both types of M dwarfs are often active, showing both Hα in emission and flares. Many planets are found orbiting M dwarfs, and most of them are terrestrial or neptunian in size, rather than jovian, yet much more work remains to be done to characterize the exoplanet population. Overall, the Solar Neighborhood is dominated by M dwarfs that are likely orbited by many small, as yet unseen, planets—some of which may harbor life very near to that in our Solar System. M dwarfs account for three of every four stars. M dwarf counts increase all the way to the end of the main sequence. M dwarfs are partially radiative at high masses and fully convective at low masses.
M 矮星在恒星群中占主导地位,每四颗恒星中就有三颗是 M 矮星,其中最近的一颗是半人马座比邻星,它是太阳系外最近的目的地。这些冷恒星的光度(万分之一到 6% L⊙)和温度(2,100-3,900 K)跨度很大,光谱以氧化钛(TiO)吸收带为主,最新的光谱类型则以氧化钒(VO)吸收带为主。它们的质量从 0.075 到 0.61 M⊙,相差 8 倍,与中 B 到 K 矮星类型的质量分布相当。M矮星系统大约有四分之一的时间是多重的,最接近的双星的轨道是通过潮汐环绕的,轨道周期大约为一周。与其他任何类型的主序星不同,质量接近 0.35 M⊙的 M 矮星的分布中存在一个缺口,这个缺口将部分对流恒星和完全对流恒星区分开来,但这两种类型的 M 矮星通常都很活跃,都会出现 Hα 发射和耀斑。许多行星被发现环绕着M矮星运行,其中大多数行星的大小是类地行星或海王星,而不是类木行星,但要确定系外行星群的特征,还有许多工作要做。总之,太阳邻近地区主要是 M 矮星,它们的轨道上可能有许多尚未发现的小行星--其中一些可能蕴藏着与太阳系非常接近的生命。 每四颗恒星中就有三颗是 M 矮星。 M矮星的数量一直增加到主序的末端。 ▪ M 矮星在质量高时是部分辐射性的,而在质量低时则是完全对流性的。
{"title":"The Character of M Dwarfs","authors":"Todd J. Henry, Wei-Chun Jao","doi":"10.1146/annurev-astro-052722-102740","DOIUrl":"https://doi.org/10.1146/annurev-astro-052722-102740","url":null,"abstract":"M dwarfs dominate the stellar population, accounting for three of every four stars, the nearest of which is Proxima Centauri, the closest destination beyond our Solar System. These cool stars span large ranges in luminosities (one ten-thousandth to 6% L<jats:sub>⊙</jats:sub>) and temperatures (2,100–3,900 K) and have spectra dominated by absorption bands of titanium oxide (TiO) and, for the latest spectral types, vanadium oxide (VO). They have masses that span 0.075 to 0.61 M<jats:sub>⊙</jats:sub>, a factor of eight, which is comparable with a spread in masses for dwarf types mid-<jats:italic>B</jats:italic> through <jats:italic>K</jats:italic>. Unlike these more massive stars, in the age of the Universe no M dwarfs have evolved in any significant way. M dwarf systems are multiple roughly one-quarter of the time, with the closest binaries found in orbits that have been circularized via tides for orbital periods of about one week. Unlike any other type of main sequence star, there is a gap in the distribution of M dwarfs near masses of 0.35 M<jats:sub>⊙</jats:sub> that pinpoints the separation of partially and fully convective stars, yet both types of M dwarfs are often active, showing both Hα in emission and flares. Many planets are found orbiting M dwarfs, and most of them are terrestrial or neptunian in size, rather than jovian, yet much more work remains to be done to characterize the exoplanet population. Overall, the Solar Neighborhood is dominated by M dwarfs that are likely orbited by many small, as yet unseen, planets—some of which may harbor life very near to that in our Solar System. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> M dwarfs account for three of every four stars. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> M dwarf counts increase all the way to the end of the main sequence. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> M dwarfs are partially radiative at high masses and fully convective at low masses. </jats:list-item> </jats:list>","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"45 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141489490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Non–Local Thermodynamic Equilibrium Abundance Analyses of Late-Type Stars 晚型恒星的三维非局部热力学平衡丰度分析
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-06-17 DOI: 10.1146/annurev-astro-052722-103557
Karin Lind, Anish M. Amarsi
The chemical compositions of stars encode the history of the universe and are thus fundamental for advancing our knowledge of astrophysics and cosmology. However, measurements of elemental abundances ratios, and our interpretations of them, strongly depend on the physical assumptions that dictate the generation of synthetic stellar spectra. Three-dimensional radiation-hydrodynamic (3D RHD) box-in-a-star simulations of stellar atmospheres offer a more realistic representation of surface convection occurring in late-type stars than do traditional one-dimensional (1D) hydrostatic models. As evident from a multitude of observational tests, the coupling of 3D RHD models with line formation in nonlocal thermodynamic equilibrium (non-LTE) today provides a solid foundation for abundance analysis for many elements. This review describes the ongoing and transformational work to advance the state of the art and replace 1D LTE spectrum synthesis with its 3D non-LTE counterpart. In summary: 3D and non-LTE effects are intricately coupled, and consistent modeling thereof is necessary for high-precision abundances; such modeling is currently feasible for individual elements in large surveys. Mean 3D (〈3D〉) models are not adequate as substitutes. The solar abundance debate is presently dominated by choices and systematic uncertainties that are not specific to 3D non-LTE modeling. 3D non-LTE abundance corrections have a profound impact on our understanding of FGK-type stars, exoplanets, and the nucleosynthetic origins of the elements.
恒星的化学成分反映了宇宙的历史,因此对于增进我们对天体物理学和宇宙学的了解至关重要。然而,元素丰度比的测量结果以及我们对它们的解释在很大程度上取决于生成合成恒星光谱的物理假设。与传统的一维(1D)流体静力学模型相比,三维辐射流体力学(3D RHD)恒星大气箱中模拟能更真实地再现晚期恒星的表面对流。从大量的观测测试中可以看出,三维 RHD 模型与非局部热力学平衡(non-LTE)中的线形成的耦合为许多元素的丰度分析提供了坚实的基础。这篇综述介绍了为推动技术发展并用三维非 LTE 频谱合成取代一维 LTE 频谱合成而正在进行的变革性工作。总而言之 三维和非 LTE 效应错综复杂地耦合在一起,要想获得高精度的丰度,就必须对其进行一致的建模;这种建模目前对大型勘测中的单个元素是可行的。平均三维(〈3D〉)模型不足以替代。 太阳丰度的争论目前主要集中在选择和系统不确定性上,而这些并不是三维非 LTE 建模所特有的。 三维非 LTE 丰度修正对我们了解 FGK 型恒星、系外行星和元素的核合成起源有着深远的影响。
{"title":"Three-Dimensional Non–Local Thermodynamic Equilibrium Abundance Analyses of Late-Type Stars","authors":"Karin Lind, Anish M. Amarsi","doi":"10.1146/annurev-astro-052722-103557","DOIUrl":"https://doi.org/10.1146/annurev-astro-052722-103557","url":null,"abstract":"The chemical compositions of stars encode the history of the universe and are thus fundamental for advancing our knowledge of astrophysics and cosmology. However, measurements of elemental abundances ratios, and our interpretations of them, strongly depend on the physical assumptions that dictate the generation of synthetic stellar spectra. Three-dimensional radiation-hydrodynamic (3D RHD) box-in-a-star simulations of stellar atmospheres offer a more realistic representation of surface convection occurring in late-type stars than do traditional one-dimensional (1D) hydrostatic models. As evident from a multitude of observational tests, the coupling of 3D RHD models with line formation in nonlocal thermodynamic equilibrium (non-LTE) today provides a solid foundation for abundance analysis for many elements. This review describes the ongoing and transformational work to advance the state of the art and replace 1D LTE spectrum synthesis with its 3D non-LTE counterpart. In summary: <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> 3D and non-LTE effects are intricately coupled, and consistent modeling thereof is necessary for high-precision abundances; such modeling is currently feasible for individual elements in large surveys. Mean 3D (〈3D〉) models are not adequate as substitutes. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The solar abundance debate is presently dominated by choices and systematic uncertainties that are not specific to 3D non-LTE modeling. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> 3D non-LTE abundance corrections have a profound impact on our understanding of FGK-type stars, exoplanets, and the nucleosynthetic origins of the elements. </jats:list-item> </jats:list>","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"45 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141530256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Observational View of Structure in Protostellar Systems 原恒星系统结构的观测视角
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-05-09 DOI: 10.1146/annurev-astro-052920-103752
John J. Tobin, Patrick D. Sheehan
The envelopes and disks that surround protostars reflect the initial conditions of star and planet formation and govern the assembly of stellar masses. Characterizing these structures requires observations that span the near-IR to centimeter wavelengths. Consequently, the past two decades have seen progress driven by numerous advances in observational facilities across this spectrum, including the Spitzer Space Telescope, Herschel Space Observatory, the Atacama Large Millimeter/submillimeter Array, and a host of other ground-based interferometers and single-dish radio telescopes. Nearly all protostars have well-formed circumstellar disks that are likely to be rotationally supported; the ability to detect a disk around a protostar is more a question of spatial resolution rather than whether or not a disk is present. The disks around protostars have inherently higher millimeter/submillimeter luminosities as compared to disks around more-evolved pre-main-sequence stars, though there may be systematic variations between star-forming regions. The envelopes around protostars are inherently asymmetric, and streamers emphasize that mass flow through the envelopes to the disks may not be homogeneous. The current mass distribution of protostars may be impacted by selection bias given that it is skewed toward solar-mass protostars, which is inconsistent with the stellar initial mass function.
原恒星周围的包层和星盘反映了恒星和行星形成的初始条件,并制约着恒星质量的组合。要描述这些结构的特征,需要进行从近红外波长到厘米波长的观测。因此,在过去的二十年里,这一波段的观测设施取得了许多进展,包括斯皮策太空望远镜、赫歇尔太空观测站、阿塔卡马大型毫米/亚毫米波阵列,以及大量其他地基干涉仪和单碟射电望远镜。 几乎所有原恒星都有形成良好的周星盘,这些周星盘很可能有旋转支撑;探测原恒星周围星盘的能力更多的是空间分辨率的问题,而不是是否存在星盘的问题。 原恒星周围的磁盘与演化程度较高的前主序恒星周围的磁盘相比,具有更高的毫米/亚毫米级光度,不过恒星形成区之间可能存在系统性差异。 原恒星周围的包层本质上是不对称的,流星强调通过包层流向盘的质量流可能并不均匀。 目前原恒星的质量分布可能受到选择偏差的影响,因为它偏向于太阳质量的原恒星,这与恒星初始质量函数不一致。
{"title":"An Observational View of Structure in Protostellar Systems","authors":"John J. Tobin, Patrick D. Sheehan","doi":"10.1146/annurev-astro-052920-103752","DOIUrl":"https://doi.org/10.1146/annurev-astro-052920-103752","url":null,"abstract":"The envelopes and disks that surround protostars reflect the initial conditions of star and planet formation and govern the assembly of stellar masses. Characterizing these structures requires observations that span the near-IR to centimeter wavelengths. Consequently, the past two decades have seen progress driven by numerous advances in observational facilities across this spectrum, including the <jats:italic>Spitzer Space Telescope</jats:italic>, <jats:italic>Herschel Space Observatory</jats:italic>, the Atacama Large Millimeter/submillimeter Array, and a host of other ground-based interferometers and single-dish radio telescopes. <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Nearly all protostars have well-formed circumstellar disks that are likely to be rotationally supported; the ability to detect a disk around a protostar is more a question of spatial resolution rather than whether or not a disk is present. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The disks around protostars have inherently higher millimeter/submillimeter luminosities as compared to disks around more-evolved pre-main-sequence stars, though there may be systematic variations between star-forming regions. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The envelopes around protostars are inherently asymmetric, and streamers emphasize that mass flow through the envelopes to the disks may not be homogeneous. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The current mass distribution of protostars may be impacted by selection bias given that it is skewed toward solar-mass protostars, which is inconsistent with the stellar initial mass function. </jats:list-item> </jats:list>","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"11 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140902950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Physical Origin of the Stellar Initial Mass Function 恒星初始质量函数的物理起源
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-23 DOI: 10.1146/annurev-astro-052622-031748
P. Hennebelle, M.Y. Grudić
Stars are among the most fundamental structures of our Universe. They comprise most of the baryonic and luminous mass of galaxies; synthesize heavy elements; and inject mass, momentum, and energy into the interstellar medium. They are also home to the planets. Because stellar properties are primarily decided by their mass, the so-called stellar initial mass function (IMF) is critical to the structuring of our Universe. We review the various physical processes and theories that have been put forward as well as the numerical simulations that have been carried out to explain the origin of the stellar IMF. Key messages from this review include the following: Gravity and turbulence most likely determine the power-law, high-mass part of the IMF. Depending of the Mach number and the density distribution, several regimes are possible, including ΓIMF ≃ 0, −0.8, −1, or −1.3, where dN/d log MM ΓIMF . These regimes are likely universal; however, the transition between these regimes is not. Protostellar jets can play a regulating influence on the IMF by injecting momentum into collapsing clumps and unbinding gas. The peak of the IMF may be a consequence of dust opacity and molecular hydrogen physics at the origin of the first hydrostatic core. This depends weakly on large-scale environmental conditions such as radiation, magnetic field, turbulence, or metallicity. This likely constitutes one reason for the relative universality of the IMF.
恒星是我们宇宙中最基本的结构之一。它们构成了星系的大部分重子质量和发光质量;合成重元素;并向星际介质注入质量、动量和能量。它们也是行星的家园。由于恒星的性质主要由其质量决定,因此所谓的恒星初始质量函数(IMF)对我们宇宙的结构至关重要。我们回顾了为解释恒星初始质量函数的起源而提出的各种物理过程和理论,以及进行的数值模拟。本综述的主要信息包括以下几点: 引力和湍流最有可能决定 IMF 的幂律、高质部分。 根据马赫数和密度分布的不同,可能存在几种状态,包括 ΓIMF ≃0、-0.8、-1 或-1.3,其中 dN/d log M ∝ M ΓIMF 。这些状态很可能是普遍存在的;但是,这些状态之间的转换并不普遍。 原恒星喷流可以通过向坍缩团块注入动量和解除气体束缚来对 IMF 起调节作用。 IMF的峰值可能是尘埃不透明度和分子氢物理学在第一个静水核心起源处的结果。这对辐射、磁场、湍流或金属性等大尺度环境条件的依赖性很弱。这可能是 IMF 具有相对普遍性的原因之一。
{"title":"The Physical Origin of the Stellar Initial Mass Function","authors":"P. Hennebelle, M.Y. Grudić","doi":"10.1146/annurev-astro-052622-031748","DOIUrl":"https://doi.org/10.1146/annurev-astro-052622-031748","url":null,"abstract":"Stars are among the most fundamental structures of our Universe. They comprise most of the baryonic and luminous mass of galaxies; synthesize heavy elements; and inject mass, momentum, and energy into the interstellar medium. They are also home to the planets. Because stellar properties are primarily decided by their mass, the so-called stellar initial mass function (IMF) is critical to the structuring of our Universe. We review the various physical processes and theories that have been put forward as well as the numerical simulations that have been carried out to explain the origin of the stellar IMF. Key messages from this review include the following: <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Gravity and turbulence most likely determine the power-law, high-mass part of the IMF. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Depending of the Mach number and the density distribution, several regimes are possible, including Γ<jats:sub>IMF</jats:sub> ≃ 0, −0.8, −1, or −1.3, where d<jats:italic>N</jats:italic>/d log <jats:italic>M</jats:italic> ∝ <jats:italic>M</jats:italic> <jats:sup>Γ<jats:sub>IMF</jats:sub> </jats:sup>. These regimes are likely universal; however, the transition between these regimes is not. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Protostellar jets can play a regulating influence on the IMF by injecting momentum into collapsing clumps and unbinding gas. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> The peak of the IMF may be a consequence of dust opacity and molecular hydrogen physics at the origin of the first hydrostatic core. This depends weakly on large-scale environmental conditions such as radiation, magnetic field, turbulence, or metallicity. This likely constitutes one reason for the relative universality of the IMF. </jats:list-item> </jats:list>","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"26 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140640384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dust Growth and Evolution in Protoplanetary Disks 原行星盘中的尘埃生长与演化
IF 33.3 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Pub Date : 2024-04-19 DOI: 10.1146/annurev-astro-071221-052705
Tilman Birnstiel
Over the past decade, advancement of observational capabilities, specifically the Atacama Large Millimeter/submillimeter Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instruments, alongside theoretical innovations like pebble accretion, have reshaped our understanding of planet formation and the physics of protoplanetary disks. Despite this progress, mysteries persist along the winded path of micrometer-sized dust, from the interstellar medium, through transport and growth in the protoplanetary disk, to becoming gravitationally bound bodies. This review outlines our current knowledge of dust evolution in circumstellar disks, yielding the following insights: Theoretical and laboratory studies have accurately predicted the growth of dust particles to sizes that are susceptible to accumulation through transport processes like radial drift and settling. Critical uncertainties in that process remain the level of turbulence, the threshold collision velocities at which dust growth stalls, and the evolution of dust porosity. Symmetric and asymmetric substructure are widespread. Dust traps appear to be solving several long-standing issues in planet formation models, and they are observationally consistent with being sites of active planetesimal formation. In some instances, planets have been identified as the causes behind substructures. This underlines the need to study earlier stages of disks to understand how planets can form so rapidly. In the future, better probes of the physical conditions in optically thick regions, including densities, turbulence strength, kinematics, and particle properties will be essential for unraveling the physical processes at play.
在过去十年中,观测能力的进步,特别是阿塔卡马大毫米/亚毫米波阵列(ALMA)和光谱-极坐标高对比度系外行星研究(SPHERE)仪器,以及鹅卵石吸积等理论创新,重塑了我们对行星形成和原行星盘物理学的认识。尽管取得了这些进展,但微米大小的尘埃从星际介质到原行星盘中的迁移和生长,再到成为具有引力束缚的天体,其曲折的轨迹仍然充满了谜团。这篇综述概述了我们目前对星盘内尘埃演化的了解,并提出了以下见解: 理论和实验室研究已经准确预测了尘埃粒子的生长过程,通过径向漂移和沉降等传输过程,尘埃粒子的大小很容易累积。 这一过程中的关键不确定因素仍然是湍流水平、尘埃生长停滞的临界碰撞速度以及尘埃孔隙率的演变。 对称和非对称亚结构普遍存在。尘埃陷阱似乎解决了行星形成模型中几个长期存在的问题,而且从观测结果来看,它们与行星形成的活跃地点相吻合。 在某些情况下,行星被认为是亚结构背后的原因。这强调了研究星盘早期阶段的必要性,以了解行星如何能如此迅速地形成。 未来,更好地探测光学厚区域的物理条件,包括密度、湍流强度、运动学和粒子特性,对于揭示其中的物理过程至关重要。
{"title":"Dust Growth and Evolution in Protoplanetary Disks","authors":"Tilman Birnstiel","doi":"10.1146/annurev-astro-071221-052705","DOIUrl":"https://doi.org/10.1146/annurev-astro-071221-052705","url":null,"abstract":"Over the past decade, advancement of observational capabilities, specifically the Atacama Large Millimeter/submillimeter Array (ALMA) and Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instruments, alongside theoretical innovations like pebble accretion, have reshaped our understanding of planet formation and the physics of protoplanetary disks. Despite this progress, mysteries persist along the winded path of micrometer-sized dust, from the interstellar medium, through transport and growth in the protoplanetary disk, to becoming gravitationally bound bodies. This review outlines our current knowledge of dust evolution in circumstellar disks, yielding the following insights: <jats:list list-type=\"bullet\"> <jats:list-item> <jats:label>▪</jats:label> Theoretical and laboratory studies have accurately predicted the growth of dust particles to sizes that are susceptible to accumulation through transport processes like radial drift and settling. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Critical uncertainties in that process remain the level of turbulence, the threshold collision velocities at which dust growth stalls, and the evolution of dust porosity. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> Symmetric and asymmetric substructure are widespread. Dust traps appear to be solving several long-standing issues in planet formation models, and they are observationally consistent with being sites of active planetesimal formation. </jats:list-item> <jats:list-item> <jats:label>▪</jats:label> In some instances, planets have been identified as the causes behind substructures. This underlines the need to study earlier stages of disks to understand how planets can form so rapidly. </jats:list-item> </jats:list> In the future, better probes of the physical conditions in optically thick regions, including densities, turbulence strength, kinematics, and particle properties will be essential for unraveling the physical processes at play.","PeriodicalId":8138,"journal":{"name":"Annual Review of Astronomy and Astrophysics","volume":"2 1","pages":""},"PeriodicalIF":33.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140621520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annual Review of Astronomy and Astrophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1