New Lifetime Distribution for Modeling Data on the Unit Interval: Properties, Applications and Quantile Regression

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Mathematical & Computational Applications Pub Date : 2022-12-03 DOI:10.3390/mca27060105
Suleman Nasiru, A. Abubakari, C. Chesneau
{"title":"New Lifetime Distribution for Modeling Data on the Unit Interval: Properties, Applications and Quantile Regression","authors":"Suleman Nasiru, A. Abubakari, C. Chesneau","doi":"10.3390/mca27060105","DOIUrl":null,"url":null,"abstract":"Probability distributions are very useful in modeling lifetime datasets. However, no specific distribution is suitable for all kinds of datasets. In this study, the bounded truncated Cauchy power exponential distribution is proposed for modeling datasets on the unit interval. The probability density function exhibits desirable shapes, such as left-skewed, right-skewed, reversed J, and bathtub shapes, whereas the hazard rate function displays J and bathtub shapes. For the purpose of modeling dependence between measures in a dataset, a bivariate extension of the proposed distribution is developed. The bivariate probability density function displays monotonic and non-monotonic shapes, making it suitable for modeling complex bivariate relations. Subsequently, the applications of the distribution are illustrated using COVID-19 data. The results revealed that the new distribution provides a better fit to the datasets compared to other existing distributions. Finally, a new quantile regression model is developed and its application demonstrated. The generated quantile regression model offers a decent fit to the data, according to the residual analysis.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca27060105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

Abstract

Probability distributions are very useful in modeling lifetime datasets. However, no specific distribution is suitable for all kinds of datasets. In this study, the bounded truncated Cauchy power exponential distribution is proposed for modeling datasets on the unit interval. The probability density function exhibits desirable shapes, such as left-skewed, right-skewed, reversed J, and bathtub shapes, whereas the hazard rate function displays J and bathtub shapes. For the purpose of modeling dependence between measures in a dataset, a bivariate extension of the proposed distribution is developed. The bivariate probability density function displays monotonic and non-monotonic shapes, making it suitable for modeling complex bivariate relations. Subsequently, the applications of the distribution are illustrated using COVID-19 data. The results revealed that the new distribution provides a better fit to the datasets compared to other existing distributions. Finally, a new quantile regression model is developed and its application demonstrated. The generated quantile regression model offers a decent fit to the data, according to the residual analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单位区间数据建模的新寿命分布:属性、应用和分位数回归
概率分布在建模生命周期数据集时非常有用。然而,没有一个特定的分布适合于所有类型的数据集。本文提出了在单位区间上对数据集进行有界截断的柯西幂指数分布建模。概率密度函数显示理想的形状,例如左偏、右偏、反J和浴缸形状,而风险率函数显示J和浴缸形状。为了对数据集中度量之间的依赖性进行建模,开发了所提出的分布的二元扩展。二元概率密度函数具有单调和非单调的形状,适合于复杂二元关系的建模。随后,使用COVID-19数据说明了该分布的应用。结果表明,与其他现有分布相比,新的分布提供了更好的数据集拟合。最后,提出了一种新的分位数回归模型,并对其应用进行了论证。根据残差分析,生成的分位数回归模型提供了对数据的良好拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
期刊最新文献
Asymptotic Behavior of Solutions to a Nonlinear Swelling Soil System with Time Delay and Variable Exponents Exploring the Potential of Mixed Fourier Series in Signal Processing Applications Using One-Dimensional Smooth Closed-Form Functions with Compact Support: A Comprehensive Tutorial Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method FE2 Computations with Deep Neural Networks: Algorithmic Structure, Data Generation, and Implementation A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1