{"title":"Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products","authors":"Priyanka Banerjee, O. C. Ulker","doi":"10.1080/15376516.2022.2053623","DOIUrl":null,"url":null,"abstract":"Abstract Human data on remains sparse and of varying quality and reproducibility. Ex vivo experiments and animal experiments currently is the most preferred way to predict the skin sensitization approved by the regulatory agencies across the world. However, there is a constant need and demand to reduce animal experiments and provide the scope of alternative methods to animal testing. In this study, we have compared the predictive performance of the published computational tools such as ProTox-II, SuperCYPsPred with the data obtained from ex-vivo experiments. From the results of the retrospective analysis, it can be observed that the computational predictions are in agreement with the experimental results. The computational models used here are generative models based on molecular structures and machine learning algorithms and can be applied also for the prediction of skin sensitization. Besides prediction of the toxicity endpoints, the models can also provide deeper insights into the molecular mechanisms and adverse outcome pathways (AOPs) associated with the chemicals used in cosmetic products.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2053623","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract Human data on remains sparse and of varying quality and reproducibility. Ex vivo experiments and animal experiments currently is the most preferred way to predict the skin sensitization approved by the regulatory agencies across the world. However, there is a constant need and demand to reduce animal experiments and provide the scope of alternative methods to animal testing. In this study, we have compared the predictive performance of the published computational tools such as ProTox-II, SuperCYPsPred with the data obtained from ex-vivo experiments. From the results of the retrospective analysis, it can be observed that the computational predictions are in agreement with the experimental results. The computational models used here are generative models based on molecular structures and machine learning algorithms and can be applied also for the prediction of skin sensitization. Besides prediction of the toxicity endpoints, the models can also provide deeper insights into the molecular mechanisms and adverse outcome pathways (AOPs) associated with the chemicals used in cosmetic products.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.