Improved Performance of Transparent MoS2 Thin-Film Transistor with IZO Electrodes by Air Thermal Annealing

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Electronic Materials Letters Pub Date : 2023-08-23 DOI:10.1007/s13391-023-00450-3
Ju Won Kim, Jin Gi An, Guen Hyung Oh, Joo Hyung Park, TaeWan Kim
{"title":"Improved Performance of Transparent MoS2 Thin-Film Transistor with IZO Electrodes by Air Thermal Annealing","authors":"Ju Won Kim,&nbsp;Jin Gi An,&nbsp;Guen Hyung Oh,&nbsp;Joo Hyung Park,&nbsp;TaeWan Kim","doi":"10.1007/s13391-023-00450-3","DOIUrl":null,"url":null,"abstract":"<div><p>Molybdenum disulfide (MoS<sub>2</sub>) grown via metal-organic chemical vapor deposition is known to exhibit high transparency and superior quality. Transparent thin-film transistor (TFT) based on a multilayer MoS<sub>2</sub> film and indium zinc oxide (IZO) using a representative transparent conducting oxide as source and drain electrodes indicate more than 70% transmittance in the visible wavelength. However, the device performance is limited by the large Schottky barrier height corresponding to the high work function of IZO (~ 5.1 eV) and surface impurities generated during the wet transfer process and subsequent oxidation. In this study, we addressed this problem by employing air thermal annealing to improve the TFT device performance. Consequently, contact resistance is reduced ~ 10 times, and the field-effect mobility and on/off ratio measured using ion-gel side gate, which are important parameters for TFT device operation, were enhanced by ~ 59 and ~ 81 times, respectively.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":536,"journal":{"name":"Electronic Materials Letters","volume":"20 3","pages":"225 - 231"},"PeriodicalIF":2.1000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s13391-023-00450-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molybdenum disulfide (MoS2) grown via metal-organic chemical vapor deposition is known to exhibit high transparency and superior quality. Transparent thin-film transistor (TFT) based on a multilayer MoS2 film and indium zinc oxide (IZO) using a representative transparent conducting oxide as source and drain electrodes indicate more than 70% transmittance in the visible wavelength. However, the device performance is limited by the large Schottky barrier height corresponding to the high work function of IZO (~ 5.1 eV) and surface impurities generated during the wet transfer process and subsequent oxidation. In this study, we addressed this problem by employing air thermal annealing to improve the TFT device performance. Consequently, contact resistance is reduced ~ 10 times, and the field-effect mobility and on/off ratio measured using ion-gel side gate, which are important parameters for TFT device operation, were enhanced by ~ 59 and ~ 81 times, respectively.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气热退火改善IZO电极透明MoS2薄膜晶体管的性能
众所周知,通过金属有机化学气相沉积生长的二硫化钼(MoS2)具有高透明度和卓越的品质。基于多层 MoS2 薄膜和氧化铟锌(IZO)的透明薄膜晶体管(TFT)使用具有代表性的透明导电氧化物作为源极和漏极,在可见光波段的透过率超过 70%。然而,由于 IZO 的功函数较高(约 5.1 eV),因此肖特基势垒高度较大,而且在湿法转移过程和随后的氧化过程中会产生表面杂质,从而限制了器件的性能。在本研究中,我们采用空气热退火来改善 TFT 器件的性能,从而解决了这一问题。因此,接触电阻降低了 ~ 10 倍,使用离子凝胶侧栅测量的场效应迁移率和开/关比(TFT 器件运行的重要参数)分别提高了 ~ 59 倍和 ~ 81 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Materials Letters
Electronic Materials Letters 工程技术-材料科学:综合
CiteScore
4.70
自引率
20.80%
发文量
52
审稿时长
2.3 months
期刊介绍: Electronic Materials Letters is an official journal of the Korean Institute of Metals and Materials. It is a peer-reviewed international journal publishing print and online version. It covers all disciplines of research and technology in electronic materials. Emphasis is placed on science, engineering and applications of advanced materials, including electronic, magnetic, optical, organic, electrochemical, mechanical, and nanoscale materials. The aspects of synthesis and processing include thin films, nanostructures, self assembly, and bulk, all related to thermodynamics, kinetics and/or modeling.
期刊最新文献
Impact of Crystal Domain on Electrical Performance and Bending Durability of Flexible Organic Thin-Film Transistors with diF-TES-ADT Semiconductor All-Cobalt-Free Layered/Olivine Mixed Cathode Material for High-Electrode Density and Enhanced Cycle-Life Performance High-speed and Sub-ppm Detectable Tellurene NO2 Chemiresistive Room-Temperature Sensor under Humidity Environments A Neural Network Approach for Health State Estimation of Lithium-Ion Batteries Incorporating Physics Knowledge Enhanced Magnetic Permeability Through Improved Packing Density for Thin-Film Type Power Inductors for High-Frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1