{"title":"A Robust Approach for Blur and Sharp Regions’ Detection Using Multisequential Deviated Patterns","authors":"Awais Khan, A. Javed, Aun Irtaza, M. Mahmood","doi":"10.1155/2021/2785225","DOIUrl":null,"url":null,"abstract":"Blur detection (BD) is an important and challenging task in digital imaging and computer vision applications. Accurate segmentation of homogenous smooth and blur regions, low-contrast focal regions, missing patches, and background clutter, without having any prior information about the blur, are the fundamental challenges of BD. Previous work on BD has emphasized much effort on designing local sharpness metric maps from the images. However, the smooth/blurred regions having the same patterns as sharp regions make them problematic. This paper presents a robust novel method to extract the local metric map for blurred and nonblurred regions based on multisequential deviated patterns (MSDPs). Unlike the preceding, MSDP extracts the local sharpness metric map on the images at multiple scales using different adaptive thresholds to overcome the problems of smooth/blur regions and missing patches. By using the integral values of the image along with image masking and Otsu thresholding, highly accurate segmented regions of the images are acquired. We argue/hypothesize that the local sharpness map extraction by using direct integral information of the image is highly affected by the threshold selected for distinction between the regions, whereas MSDP feature extraction overcomes the limitations substantially by using automatic threshold computation over multiple scales of the images. Moreover, the proposed method extracts the relatively accurate sharp regions from the high-dense blur and noisy images. Experiments are conducted on two commonly used SHI and DUT datasets for blur and sharp region classifications. The results indicate the effectiveness of the proposed method in terms of sharp segmented regions. Experimental results of qualitative and quantitative comparisons of the proposed method with ten comparative methods demonstrate the superiority of our method. Moreover, the proposed method is also computationally efficient over state-of-the-art methods.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/2785225","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
Blur detection (BD) is an important and challenging task in digital imaging and computer vision applications. Accurate segmentation of homogenous smooth and blur regions, low-contrast focal regions, missing patches, and background clutter, without having any prior information about the blur, are the fundamental challenges of BD. Previous work on BD has emphasized much effort on designing local sharpness metric maps from the images. However, the smooth/blurred regions having the same patterns as sharp regions make them problematic. This paper presents a robust novel method to extract the local metric map for blurred and nonblurred regions based on multisequential deviated patterns (MSDPs). Unlike the preceding, MSDP extracts the local sharpness metric map on the images at multiple scales using different adaptive thresholds to overcome the problems of smooth/blur regions and missing patches. By using the integral values of the image along with image masking and Otsu thresholding, highly accurate segmented regions of the images are acquired. We argue/hypothesize that the local sharpness map extraction by using direct integral information of the image is highly affected by the threshold selected for distinction between the regions, whereas MSDP feature extraction overcomes the limitations substantially by using automatic threshold computation over multiple scales of the images. Moreover, the proposed method extracts the relatively accurate sharp regions from the high-dense blur and noisy images. Experiments are conducted on two commonly used SHI and DUT datasets for blur and sharp region classifications. The results indicate the effectiveness of the proposed method in terms of sharp segmented regions. Experimental results of qualitative and quantitative comparisons of the proposed method with ten comparative methods demonstrate the superiority of our method. Moreover, the proposed method is also computationally efficient over state-of-the-art methods.
期刊介绍:
International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.