Mn (II) Adsorption on Activated Carbon Derived from Amaro (Spondias pinnata) Seed Stone

Q4 Materials Science Journal of Surface Science and Technology Pub Date : 2021-04-09 DOI:10.18311/JSST/2020/25657
M. Adhikari, A. Thapa
{"title":"Mn (II) Adsorption on Activated Carbon Derived from Amaro (Spondias pinnata) Seed Stone","authors":"M. Adhikari, A. Thapa","doi":"10.18311/JSST/2020/25657","DOIUrl":null,"url":null,"abstract":"Amaro (Spondias pinnata) seed stone powder was activated using phosphoric acid and carbonized in a muffle furnace at three different temperatures, viz. 300, 400 and 500oC (PAC-300, PAC-400 and PAC-500) to produced Activated Carbons (ACs). Thus, obtained ACs are characterized using Boehm titration, iodine number and scanning electron microscopy (SEM). The observed results attributed that PACs contained irregular sized and shaped particles with well-developed pores, which mostly consisted of carboxyl and phenolic functional groups. Among the ACs, PAC-400 had a highest values of methylene blue number, iodine number and specific surface area, which were 181mg/g, 371.02 mg/g and 582 m2/g, respectively. For the 150 mg/L of methylene blue concentration the adsorption capacity of all the PACs was 100% and the adsorption isotherm followed Langmuir isotherm with Qmax of 256.41 mg/g. Within 2 hours at pH 5, PAC-400 removed as high as 94% of Mn(II) ion from 25 mg/L and up to 40% from 400 mg/L concentration of manganese from an aqueous solution. The adsorption kinetics described pseudo second order kinetics indicating chemisorption. All the results attributed that the phosphoric acid activated amaro seed stone can be used as efficient adsorbent to absorb manganese from an aqueous solution.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JSST/2020/25657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 1

Abstract

Amaro (Spondias pinnata) seed stone powder was activated using phosphoric acid and carbonized in a muffle furnace at three different temperatures, viz. 300, 400 and 500oC (PAC-300, PAC-400 and PAC-500) to produced Activated Carbons (ACs). Thus, obtained ACs are characterized using Boehm titration, iodine number and scanning electron microscopy (SEM). The observed results attributed that PACs contained irregular sized and shaped particles with well-developed pores, which mostly consisted of carboxyl and phenolic functional groups. Among the ACs, PAC-400 had a highest values of methylene blue number, iodine number and specific surface area, which were 181mg/g, 371.02 mg/g and 582 m2/g, respectively. For the 150 mg/L of methylene blue concentration the adsorption capacity of all the PACs was 100% and the adsorption isotherm followed Langmuir isotherm with Qmax of 256.41 mg/g. Within 2 hours at pH 5, PAC-400 removed as high as 94% of Mn(II) ion from 25 mg/L and up to 40% from 400 mg/L concentration of manganese from an aqueous solution. The adsorption kinetics described pseudo second order kinetics indicating chemisorption. All the results attributed that the phosphoric acid activated amaro seed stone can be used as efficient adsorbent to absorb manganese from an aqueous solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Amaro(Spondias羽状茎)籽石活性炭对Mn(II)的吸附
用磷酸活化Amaro (Spondias pinnata)籽石粉,并在马弗炉中在300、400和500℃(PAC-300、PAC-400和PAC-500)三种不同温度下炭化,生产活性炭(ACs)。用Boehm滴定法、碘值法和扫描电子显微镜(SEM)对所得的ACs进行了表征。结果表明:PACs颗粒大小和形状不规则,孔隙发育,主要由羧基和酚基官能团组成。其中,PAC-400的亚甲基蓝值、碘值和比表面积最高,分别为181mg/g、371.02 mg/g和582 m2/g。当亚甲基蓝浓度为150 mg/L时,各pac的吸附量均为100%,吸附等温线符合Langmuir等温线,Qmax为256.41 mg/g。在pH为5的条件下,PAC-400在2小时内,从25 mg/L的水溶液中去除高达94%的Mn(II)离子,从400 mg/L的水溶液中去除高达40%的锰。吸附动力学描述为准二级动力学,表明化学吸附。结果表明,磷酸活化的苋菜籽石可以作为有效的吸附剂吸附水中的锰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1