The energy consumption prediction of the direct cabling machine based on balloon theory

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES Journal of Industrial Textiles Pub Date : 2023-01-01 DOI:10.1177/15280837231190407
Hua Zhang, Xianghao Zhang, Yuzhu Wu, Jiangtao Wang, Huidi Xia, Yi-kun Wei
{"title":"The energy consumption prediction of the direct cabling machine based on balloon theory","authors":"Hua Zhang, Xianghao Zhang, Yuzhu Wu, Jiangtao Wang, Huidi Xia, Yi-kun Wei","doi":"10.1177/15280837231190407","DOIUrl":null,"url":null,"abstract":"When the direct cabling machine produces cord, the active yarn feeder is usually used to control the balloon shape to reduce the energy consumption in the process of twisting. In order to rationally allocate the resources in the production workshop of direct cabling machine, the work proposed a prediction method of energy-consumption reduction for direct cabling machines based on balloon theory. The energy consumption of direct cabling machine with different balloon configuration parameters can be obtained. The prediction method consists of three main steps: (1) Analyze yarn force under the high velocity based on yarn balloon kinematics. (2) Take the energy consumed by the direct cabling machine corresponding to a balloon shape as the energy consumption benchmark. (3) Compare balloon shapes that need to be predicted with the referenced balloon shape to obtain the energy consumption prediction in a ratio. A mathematical balloon model was established on the MATLAB platform to test the influences of different working conditions on the prediction method. The simulation results showed that the influences of the yarn linear density, twist, and spindle speed on the method could be neglected. An experimental platform was built to test the energy consumption of the direct cabling machine under different working conditions and verify the rationality of the method. The results showed that the difference between the predicted energy consumption and the experimental results is acceptable.","PeriodicalId":16097,"journal":{"name":"Journal of Industrial Textiles","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Textiles","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15280837231190407","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

When the direct cabling machine produces cord, the active yarn feeder is usually used to control the balloon shape to reduce the energy consumption in the process of twisting. In order to rationally allocate the resources in the production workshop of direct cabling machine, the work proposed a prediction method of energy-consumption reduction for direct cabling machines based on balloon theory. The energy consumption of direct cabling machine with different balloon configuration parameters can be obtained. The prediction method consists of three main steps: (1) Analyze yarn force under the high velocity based on yarn balloon kinematics. (2) Take the energy consumed by the direct cabling machine corresponding to a balloon shape as the energy consumption benchmark. (3) Compare balloon shapes that need to be predicted with the referenced balloon shape to obtain the energy consumption prediction in a ratio. A mathematical balloon model was established on the MATLAB platform to test the influences of different working conditions on the prediction method. The simulation results showed that the influences of the yarn linear density, twist, and spindle speed on the method could be neglected. An experimental platform was built to test the energy consumption of the direct cabling machine under different working conditions and verify the rationality of the method. The results showed that the difference between the predicted energy consumption and the experimental results is acceptable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于气球理论的直接布线机能耗预测
直接成缆机生产帘子线时,通常采用主动喂纱器控制气球形状,以减少加捻过程中的能耗。为了合理配置直布线机生产车间的资源,提出了一种基于气球理论的直布线机能耗降低预测方法。可以获得不同气球配置参数的直布线机的能耗。该预测方法主要包括三个步骤:(1)基于纱囊运动学分析高速下的纱线受力。(2) 以气球形状对应的直接布线机所消耗的能量作为能耗基准。(3) 将需要预测的气球形状与参考气球形状进行比较,以获得按比例的能耗预测。在MATLAB平台上建立了气球数学模型,测试了不同工况对预测方法的影响。仿真结果表明,纱线线密度、捻度和锭子速度对该方法的影响可以忽略不计。搭建了一个实验平台,对直缆机在不同工况下的能耗进行了测试,验证了该方法的合理性。结果表明,预测能耗与实验结果之间的差异是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Industrial Textiles
Journal of Industrial Textiles MATERIALS SCIENCE, TEXTILES-
CiteScore
5.30
自引率
18.80%
发文量
165
审稿时长
2.3 months
期刊介绍: The Journal of Industrial Textiles is the only peer reviewed journal devoted exclusively to technology, processing, methodology, modelling and applications in technical textiles, nonwovens, coated and laminated fabrics, textile composites and nanofibers.
期刊最新文献
Influence of honeycomb structures on fluids transmission and heat retention properties; An initiative towards stretchable weaves Experimental study on protective performance of ACF sandwich composites with different configurations in high-velocity impact Comprehensive study of the off-axis mechanical behaviors of a Polytetrafluoroethylene‐ coated fabric after 23 Years of service at Shanghai stadium Transformation of zinc acetate into ZnO nanofibers for enhanced NOx gas sensing: Cost-effective strategies and additive-free optimization Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1