Hyunji Lee , Hakkwan Kim , Jihye Kim , Sang-Min Jun , Soonho Hwang , Jung-Hun Song , Moon-Seong Kang
{"title":"Analysis of the effects of low impact development practices on hydrological components using HSPF","authors":"Hyunji Lee , Hakkwan Kim , Jihye Kim , Sang-Min Jun , Soonho Hwang , Jung-Hun Song , Moon-Seong Kang","doi":"10.1016/j.jher.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>The purposes of this study are to propose the new approach for modeling the effectiveness of low impact development (LID) practices using Hydrological Simulation Program-Fortran (HSPF)'s Surface-FTABLE (function table) and to evaluate the impacts of LID application on hydrological components and water balance. LID was simulated using Surface-FTABLE, and changes in hydrological components and water balance were analyzed. These results were compared with results simulating LID using the HSPF LID Controls Tool built in the HSPF model. Embedded within the HSPF model, the HSPF LID Controls Tool is used to design and simulate infiltration-based best management practices. Surface runoff decreased similarly for both methods using Surface-FTABLE and LID Controls Tool. For Surface-FTABLE, the infiltration in the facility was reflected in the model, so interflow, outflow and baseflow outflow increased. As a result of the water balance analysis, the results of Surface-FTABLE showed a similar bias to those of the model without LID. In contrast, the results of the LID Controls Tool showed a large bias due to uninvolved infiltration. This study showed that HSPF Surface-FTABLE is applicable to LID simulation and that it is possible to simulate the change of each element of hydrologic components reasonably.</p></div>","PeriodicalId":49303,"journal":{"name":"Journal of Hydro-environment Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydro-environment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570644323000011","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The purposes of this study are to propose the new approach for modeling the effectiveness of low impact development (LID) practices using Hydrological Simulation Program-Fortran (HSPF)'s Surface-FTABLE (function table) and to evaluate the impacts of LID application on hydrological components and water balance. LID was simulated using Surface-FTABLE, and changes in hydrological components and water balance were analyzed. These results were compared with results simulating LID using the HSPF LID Controls Tool built in the HSPF model. Embedded within the HSPF model, the HSPF LID Controls Tool is used to design and simulate infiltration-based best management practices. Surface runoff decreased similarly for both methods using Surface-FTABLE and LID Controls Tool. For Surface-FTABLE, the infiltration in the facility was reflected in the model, so interflow, outflow and baseflow outflow increased. As a result of the water balance analysis, the results of Surface-FTABLE showed a similar bias to those of the model without LID. In contrast, the results of the LID Controls Tool showed a large bias due to uninvolved infiltration. This study showed that HSPF Surface-FTABLE is applicable to LID simulation and that it is possible to simulate the change of each element of hydrologic components reasonably.
期刊介绍:
The journal aims to provide an international platform for the dissemination of research and engineering applications related to water and hydraulic problems in the Asia-Pacific region. The journal provides a wide distribution at affordable subscription rate, as well as a rapid reviewing and publication time. The journal particularly encourages papers from young researchers.
Papers that require extensive language editing, qualify for editorial assistance with American Journal Experts, a Language Editing Company that Elsevier recommends. Authors submitting to this journal are entitled to a 10% discount.