{"title":"Using Neural Networks for a Universal Framework for Agent-based Models","authors":"Georg Jäger","doi":"10.1080/13873954.2021.1889609","DOIUrl":null,"url":null,"abstract":"ABSTRACT Traditional agent-based modelling is mostly rule-based. For many systems, this approach is extremely successful, since the rules are well understood. However, for a large class of systems it is difficult to find rules that adequately describe the behaviour of the agents. A simple example would be two agents playing chess: Here, it is impossible to find simple rules. To solve this problem, we introduce a framework for agent-based modelling that incorporates machine learning. In a process closely related to reinforcement learning, the agents learn rules. As a trade-off, a utility function needs to be defined, which is much simpler in most cases. We test this framework to replicate the results of the prominent Sugarscape model as a proof of principle. Furthermore, we investigate a more complicated version of the Sugarscape model, that exceeds the scope of the original framework. By expanding the framework we also find satisfying results there.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"27 1","pages":"162 - 178"},"PeriodicalIF":1.8000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2021.1889609","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2021.1889609","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 8
Abstract
ABSTRACT Traditional agent-based modelling is mostly rule-based. For many systems, this approach is extremely successful, since the rules are well understood. However, for a large class of systems it is difficult to find rules that adequately describe the behaviour of the agents. A simple example would be two agents playing chess: Here, it is impossible to find simple rules. To solve this problem, we introduce a framework for agent-based modelling that incorporates machine learning. In a process closely related to reinforcement learning, the agents learn rules. As a trade-off, a utility function needs to be defined, which is much simpler in most cases. We test this framework to replicate the results of the prominent Sugarscape model as a proof of principle. Furthermore, we investigate a more complicated version of the Sugarscape model, that exceeds the scope of the original framework. By expanding the framework we also find satisfying results there.
期刊介绍:
Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems.
The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application.
MCMDS welcomes original articles on a range of topics including:
-methods of modelling and simulation-
automation of modelling-
qualitative and modular modelling-
data-based and learning-based modelling-
uncertainties and the effects of modelling errors on system performance-
application of modelling to complex real-world systems.