{"title":"Investigation on the Printability of Recycled Thermoplastic Polyurethane/Carbon Nanotube Nanocomposites","authors":"F. Stan, I. Sandu, C. Fetecau","doi":"10.1115/1.4063036","DOIUrl":null,"url":null,"abstract":"\n Although the production of polymer/carbon nanotube (CNT) nanocomposites has grown exponentially over the last years for a variety of applications, the availability of polymer/CNT filaments for the use in commercial 3D printing systems is very limited and, currently, little is known about the printability of recycled polymer/CNT nanocomposites. In this respect, the fused filament fabrication (FFF) of recycled thermoplastic polyurethane/carbon nanotube (TPU/CNT) nanocomposites was investigated with special focus on the piezoresistive behavior. Mechanically recycled and virgin TPU/CNT nanocomposites with different CNT contents (0.5, 1, 3, and 5 wt% by weight) were subjected to filament extrusion and FFF, and the changes induced by mechanical recycling, CNT contents and infill orientation were monitored by melt flow index, thermal, mechanical, electrical and piezoresistive properties. It was found that the recycled TPU nanocomposites exhibit very good printability with mechanical and electrical properties that are generally comparable with those for the virgin nanocomposites, the decrease of the elongation at break at 5 wt% CNTs being the primary challenge for the mechanical recycling of TPU/CNT nanocomposites. The 3D printed recycled TPU/CNT nanocomposites with 3 wt% and 5 wt% CNTs provide very good strain sensing behavior, with sensitivity and stretchability higher than those of the virgin nanocomposites. The findings of this work provide guidance for assessing the potential of using recycled TPU/CNT nanocomposites for 3D printing strain sensors with tuned sensitivity for a wide range of human motions.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Although the production of polymer/carbon nanotube (CNT) nanocomposites has grown exponentially over the last years for a variety of applications, the availability of polymer/CNT filaments for the use in commercial 3D printing systems is very limited and, currently, little is known about the printability of recycled polymer/CNT nanocomposites. In this respect, the fused filament fabrication (FFF) of recycled thermoplastic polyurethane/carbon nanotube (TPU/CNT) nanocomposites was investigated with special focus on the piezoresistive behavior. Mechanically recycled and virgin TPU/CNT nanocomposites with different CNT contents (0.5, 1, 3, and 5 wt% by weight) were subjected to filament extrusion and FFF, and the changes induced by mechanical recycling, CNT contents and infill orientation were monitored by melt flow index, thermal, mechanical, electrical and piezoresistive properties. It was found that the recycled TPU nanocomposites exhibit very good printability with mechanical and electrical properties that are generally comparable with those for the virgin nanocomposites, the decrease of the elongation at break at 5 wt% CNTs being the primary challenge for the mechanical recycling of TPU/CNT nanocomposites. The 3D printed recycled TPU/CNT nanocomposites with 3 wt% and 5 wt% CNTs provide very good strain sensing behavior, with sensitivity and stretchability higher than those of the virgin nanocomposites. The findings of this work provide guidance for assessing the potential of using recycled TPU/CNT nanocomposites for 3D printing strain sensors with tuned sensitivity for a wide range of human motions.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining