Future colliders for the high-energy frontier

Q1 Physics and Astronomy Reviews in Physics Pub Date : 2021-06-01 DOI:10.1016/j.revip.2021.100053
Heather M. Gray
{"title":"Future colliders for the high-energy frontier","authors":"Heather M. Gray","doi":"10.1016/j.revip.2021.100053","DOIUrl":null,"url":null,"abstract":"<div><p>Colliders have been at the forefront of discovery in particle physics for more than half a century. Building on the success of the Large Hadron Collider (LHC), the field of particle physics has been developing and reviewing the scientific cases for the colliders to succeed the LHC in the context of regional and international review and long-term planning processes. The aim is to reach consensus about which new collider or even colliders to build. This collider would determine the future direction of the field of particle physics and, ideally, lead to solutions to unanswered questions and problems with the Standard Model. We will provide a short overview of the current proposals for different colliders for the high-energy frontier and their proposed run plans. It will focus on comparing and contrasting their physics potential, while also placing them in their historical context.</p></div>","PeriodicalId":37875,"journal":{"name":"Reviews in Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.revip.2021.100053","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405428321000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 5

Abstract

Colliders have been at the forefront of discovery in particle physics for more than half a century. Building on the success of the Large Hadron Collider (LHC), the field of particle physics has been developing and reviewing the scientific cases for the colliders to succeed the LHC in the context of regional and international review and long-term planning processes. The aim is to reach consensus about which new collider or even colliders to build. This collider would determine the future direction of the field of particle physics and, ideally, lead to solutions to unanswered questions and problems with the Standard Model. We will provide a short overview of the current proposals for different colliders for the high-energy frontier and their proposed run plans. It will focus on comparing and contrasting their physics potential, while also placing them in their historical context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高能前沿的未来对撞机
半个多世纪以来,对撞机一直处于粒子物理学发现的前沿。在大型强子对撞机(LHC)取得成功的基础上,粒子物理领域一直在开发和审查对撞机在区域和国际审查和长期规划过程中取得成功的科学案例。其目的是达成共识,以建立新的对撞机,甚至对撞机。这台对撞机将决定粒子物理学领域的未来方向,理想情况下,它将为标准模型中尚未解决的问题和问题提供解决方案。我们将简要概述当前针对高能前沿的不同对撞机的建议及其建议的运行计划。它将侧重于比较和对比它们的物理潜力,同时也将它们置于它们的历史背景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Physics
Reviews in Physics Physics and Astronomy-Physics and Astronomy (all)
CiteScore
21.30
自引率
0.00%
发文量
8
审稿时长
98 days
期刊介绍: Reviews in Physics is a gold open access Journal, publishing review papers on topics in all areas of (applied) physics. The journal provides a platform for researchers who wish to summarize a field of physics research and share this work as widely as possible. The published papers provide an overview of the main developments on a particular topic, with an emphasis on recent developments, and sketch an outlook on future developments. The journal focuses on short review papers (max 15 pages) and these are freely available after publication. All submitted manuscripts are fully peer-reviewed and after acceptance a publication fee is charged to cover all editorial, production, and archiving costs.
期刊最新文献
Localization in quantum field theory Deep generative models for detector signature simulation: A taxonomic review Magnetism on frustrated magnet system of Nd2B2O7 (B = Ru, Ir, Hf, Pb, Mo, and Zr): A systematic literature review A photonics perspective on computing with physical substrates Machine learning for anomaly detection in particle physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1