Effect of saline–alkaline stresses on the interspecific competition between Aegilops tauschii and Triticum aestivum

IF 1.5 4区 农林科学 Q4 SOIL SCIENCE Canadian Journal of Soil Science Pub Date : 2023-08-02 DOI:10.1139/cjss-2022-0124
Ning Wang, Hao Chen
{"title":"Effect of saline–alkaline stresses on the interspecific competition between Aegilops tauschii and Triticum aestivum","authors":"Ning Wang, Hao Chen","doi":"10.1139/cjss-2022-0124","DOIUrl":null,"url":null,"abstract":"Soil salinization has produced severe consequences on global agricultural production and ecological environment. Based on the features of saline soils in China, through mixed NaCl, NaHCO3, Na2SO4, and Na2CO3 at varying ratios to simulate the salinity–alkalinity stress and conducted a controlled pot experiment using De Wit replacement method. The effects of salinity–alkalinity stress on the growth of Aegilops tauschii and its competition with wheat were explored to provide a reference for the study of invasion mechanism of A. tauschii. The result showed that, the salinity–alkalinity stress inhibited the growth and development of both the species, which was reflected in plant height, leaf area and total biomass indicators. Secondly, the tolerance of both plant species to salinity–alkalinity stress was improved by increasing the superoxide dismutase (SOD) activity and the proline content. However, as the salinity–alkalinity stress was exacerbated, the relative conductivity and thiobarbituric acid (TBARS) content increased significantly in both the species. As suggested by the level of increase in SOD activity, proline content, relative conductivity, and TBARS content, A. tauschii was more tolerant to the salinity–alkalinity stress than wheat. Finally, it can be seen from the value of the competition balance index, A. tauschii was still more competitive than wheat even under salinity–alkalinity stress. In summary, A. tauschii was more tolerant of the salinity–alkalinity stress than wheat through the favorable adjustment of morphology, biomass allocation pattern, and physiological features, which is expected to increase its invasion damage to wheat.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2022-0124","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Soil salinization has produced severe consequences on global agricultural production and ecological environment. Based on the features of saline soils in China, through mixed NaCl, NaHCO3, Na2SO4, and Na2CO3 at varying ratios to simulate the salinity–alkalinity stress and conducted a controlled pot experiment using De Wit replacement method. The effects of salinity–alkalinity stress on the growth of Aegilops tauschii and its competition with wheat were explored to provide a reference for the study of invasion mechanism of A. tauschii. The result showed that, the salinity–alkalinity stress inhibited the growth and development of both the species, which was reflected in plant height, leaf area and total biomass indicators. Secondly, the tolerance of both plant species to salinity–alkalinity stress was improved by increasing the superoxide dismutase (SOD) activity and the proline content. However, as the salinity–alkalinity stress was exacerbated, the relative conductivity and thiobarbituric acid (TBARS) content increased significantly in both the species. As suggested by the level of increase in SOD activity, proline content, relative conductivity, and TBARS content, A. tauschii was more tolerant to the salinity–alkalinity stress than wheat. Finally, it can be seen from the value of the competition balance index, A. tauschii was still more competitive than wheat even under salinity–alkalinity stress. In summary, A. tauschii was more tolerant of the salinity–alkalinity stress than wheat through the favorable adjustment of morphology, biomass allocation pattern, and physiological features, which is expected to increase its invasion damage to wheat.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
盐碱胁迫对灰山羊草与小麦种间竞争的影响
土壤盐碱化对全球农业生产和生态环境造成了严重影响。根据中国盐渍土的特点,采用不同比例的NaCl、NaHCO3、Na2SO4和Na2CO3混合模拟盐碱胁迫,采用De Wit置换法进行对照盆栽试验。探讨盐碱度胁迫对黄斑麦草生长及与小麦竞争的影响,为研究黄斑麦草的入侵机制提供参考。结果表明,盐碱胁迫抑制了两种植物的生长发育,表现在株高、叶面积和总生物量指标上。其次,通过提高超氧化物歧化酶(SOD)活性和脯氨酸含量,提高了两种植物对盐碱胁迫的耐受性。然而,随着盐碱胁迫的加剧,两种植物的相对电导率和硫代巴比妥酸(TBARS)含量均显著增加。从SOD活性、脯氨酸含量、相对电导率和TBARS含量的升高水平可以看出,黄藻对盐碱胁迫的耐受性强于小麦。最后,从竞争平衡指数的值可以看出,即使在盐碱度胁迫下,黄豆仍比小麦更具竞争力。综上所述,通过对形态、生物量分配模式和生理特征的有利调节,黄刺麦对盐碱胁迫的耐受性优于小麦,这可能会增加其对小麦的入侵危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Soil Science
Canadian Journal of Soil Science 农林科学-土壤科学
CiteScore
2.90
自引率
11.80%
发文量
73
审稿时长
6.0 months
期刊介绍: The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.
期刊最新文献
Gamma radiation for the estimation of mineral soil water content in a boreal forest Soil enzyme activities in heavily manured and waterlogged soil cultivated with ryegrass (Lolium multiflorum) A Self-adjusting Parametric Model for Attenuation Characteristics of WUSN Signal Parameter calibration of discrete element simulation for the interaction between heavy soil and soil-engaging components in shellfish culture Loss of potentially toxic elements to snowmelt runoff from soils amended with alum, gypsum, and Epsom salt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1