{"title":"Forest Machinery Fires","authors":"R. Visser, Samuel Lloyd McDell, O. Obi","doi":"10.5552/CROJFE.2021.702","DOIUrl":null,"url":null,"abstract":"Fires in forest machines are typically catastrophic in terms of machine destruction and can develop rapidly to be a risk to the machine operator. They are an issue worldwide and there can be larger consequences such as starting a major forest fire. This paper describes trends in machine fire occurrences in the New Zealand forest harvesting sector. A total of 224 machinery fire incidents were recorded over an 8 year period from 2007 to 2014. Trends in forest machinery fires in the sector were identified and summarized. Late morning (10 am-noon) and mid-afternoon (2–4 pm) showed the highest incidence of machine fire, corresponding to periods with the highest level of work. Excluding the main holiday months, there was a correlation of machine fires to average monthly temperature. Summary statistics on causes of fire ignition showed that 40% were attributed to electrical and hydraulic faults; however, some remain unidentified as the fires commenced after work was completed. A short survey of industry managers was carried out to ascertain machine fire perceptions. 67% agreed that machine fire was an issue, and only 33% thought the current industry procedures were sufficient to mitigate them. The report concludes with proactive measures to reduce the incidence of forest machine fire risk.","PeriodicalId":55204,"journal":{"name":"Croatian Journal of Forest Engineering","volume":"42 1","pages":"283-290"},"PeriodicalIF":2.7000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Croatian Journal of Forest Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5552/CROJFE.2021.702","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Fires in forest machines are typically catastrophic in terms of machine destruction and can develop rapidly to be a risk to the machine operator. They are an issue worldwide and there can be larger consequences such as starting a major forest fire. This paper describes trends in machine fire occurrences in the New Zealand forest harvesting sector. A total of 224 machinery fire incidents were recorded over an 8 year period from 2007 to 2014. Trends in forest machinery fires in the sector were identified and summarized. Late morning (10 am-noon) and mid-afternoon (2–4 pm) showed the highest incidence of machine fire, corresponding to periods with the highest level of work. Excluding the main holiday months, there was a correlation of machine fires to average monthly temperature. Summary statistics on causes of fire ignition showed that 40% were attributed to electrical and hydraulic faults; however, some remain unidentified as the fires commenced after work was completed. A short survey of industry managers was carried out to ascertain machine fire perceptions. 67% agreed that machine fire was an issue, and only 33% thought the current industry procedures were sufficient to mitigate them. The report concludes with proactive measures to reduce the incidence of forest machine fire risk.
期刊介绍:
Croatian Journal of Forest Engineering (CROJFE) is a refereed journal distributed internationally, publishing original research articles concerning forest engineering, both theoretical and empirical. The journal covers all aspects of forest engineering research, ranging from basic to applied subjects. In addition to research articles, preliminary research notes and subject reviews are published.
Journal Subjects and Fields:
-Harvesting systems and technologies-
Forest biomass and carbon sequestration-
Forest road network planning, management and construction-
System organization and forest operations-
IT technologies and remote sensing-
Engineering in urban forestry-
Vehicle/machine design and evaluation-
Modelling and sustainable management-
Eco-efficient technologies in forestry-
Ergonomics and work safety