{"title":"Grouping technology and a hybrid genetic algorithm-desirability function approach for optimum design of cellular manufacturing systems","authors":"Atiya Al-Zuheri, Hussein S. Ketan, Ilias Vlachos","doi":"10.1049/cim2.12053","DOIUrl":null,"url":null,"abstract":"<p>Cell formation and machine layout in cellular manufacturing systems (CMs) design are considered as a crucial, yet hard and complex decision process. Owing to the nondeterministic polynomial time (NP) and combinatorial class of this problem, this paper presents an innovative heuristic approach to re-arrange machines enabling the minimisation of inter/intra- cellular movements as well as the cost of material handling between machines, therefore increasing group efficiency and efficacy. The heuristic approach, which is based on group technology, genetic algorithms, and desirability function, determines the optimal solution for flexible cell formation and machine layout within each cell. Flexibility refers to an explicit improvement using the desirability function to modify cell design by altering the ratio data; that is, the weight factor to meet demand flexibility. Specifically, the desirable function proposed here to provide the optimal setting of the weighting factor as a key factor which enables CMs design the flexibility to control the cell size. Promised results were obtained when the proposed approach was applied to a case study. Practical implications and recommendations are provided for use by decision makers in the design of CMs.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"4 4","pages":"267-285"},"PeriodicalIF":2.5000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12053","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2
Abstract
Cell formation and machine layout in cellular manufacturing systems (CMs) design are considered as a crucial, yet hard and complex decision process. Owing to the nondeterministic polynomial time (NP) and combinatorial class of this problem, this paper presents an innovative heuristic approach to re-arrange machines enabling the minimisation of inter/intra- cellular movements as well as the cost of material handling between machines, therefore increasing group efficiency and efficacy. The heuristic approach, which is based on group technology, genetic algorithms, and desirability function, determines the optimal solution for flexible cell formation and machine layout within each cell. Flexibility refers to an explicit improvement using the desirability function to modify cell design by altering the ratio data; that is, the weight factor to meet demand flexibility. Specifically, the desirable function proposed here to provide the optimal setting of the weighting factor as a key factor which enables CMs design the flexibility to control the cell size. Promised results were obtained when the proposed approach was applied to a case study. Practical implications and recommendations are provided for use by decision makers in the design of CMs.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).