Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification

IF 0.5 Q4 STATISTICS & PROBABILITY Communications for Statistical Applications and Methods Pub Date : 2022-09-30 DOI:10.29220/csam.2022.29.5.603
Su Hyeong Yang, S. Shin, Woo-Chang Sung, Choon Won Lee
{"title":"Naive Bayes classifiers boosted by sufficient dimension reduction: applications to top-k classification","authors":"Su Hyeong Yang, S. Shin, Woo-Chang Sung, Choon Won Lee","doi":"10.29220/csam.2022.29.5.603","DOIUrl":null,"url":null,"abstract":"The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing su ffi cient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers’ face shape, demonstrating its utility in the top- k classification problem.","PeriodicalId":44931,"journal":{"name":"Communications for Statistical Applications and Methods","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications for Statistical Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29220/csam.2022.29.5.603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The naive Bayes classifier is one of the most straightforward classification tools and directly estimates the class probability. However, because it relies on the independent assumption of the predictor, which is rarely satisfied in real-world problems, its application is limited in practice. In this article, we propose employing su ffi cient dimension reduction (SDR) to substantially improve the performance of the naive Bayes classifier, which is often deteriorated when the number of predictors is not restrictively small. This is not surprising as SDR reduces the predictor dimension without sacrificing classification information, and predictors in the reduced space are constructed to be uncorrelated. Therefore, SDR leads the naive Bayes to no longer be naive. We applied the proposed naive Bayes classifier after SDR to build a recommendation system for the eyewear-frames based on customers’ face shape, demonstrating its utility in the top- k classification problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
充分降维的朴素贝叶斯分类器:top-k分类的应用
朴素贝叶斯分类器是最简单的分类工具之一,它直接估计类的概率。然而,由于它依赖于预测器的独立假设,这在现实问题中很少得到满足,因此在实践中的应用受到限制。在本文中,我们提出采用有效降维(SDR)来大幅提高朴素贝叶斯分类器的性能,当预测器的数量不是限制性小时,朴素贝叶斯分类器的性能往往会下降。这并不奇怪,因为SDR在不牺牲分类信息的情况下降低了预测因子维数,并且在减少的空间中构建了不相关的预测因子。因此,SDR使得朴素贝叶斯不再幼稚。我们将SDR后提出的朴素贝叶斯分类器应用于基于客户脸型的眼镜框推荐系统,证明了其在top- k分类问题中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
49
期刊介绍: Communications for Statistical Applications and Methods (Commun. Stat. Appl. Methods, CSAM) is an official journal of the Korean Statistical Society and Korean International Statistical Society. It is an international and Open Access journal dedicated to publishing peer-reviewed, high quality and innovative statistical research. CSAM publishes articles on applied and methodological research in the areas of statistics and probability. It features rapid publication and broad coverage of statistical applications and methods. It welcomes papers on novel applications of statistical methodology in the areas including medicine (pharmaceutical, biotechnology, medical device), business, management, economics, ecology, education, computing, engineering, operational research, biology, sociology and earth science, but papers from other areas are also considered.
期刊最新文献
Influence diagnostics for skew-t censored linear regression models Identification of indirect effects in the two-condition within-subject mediation model and its implementation using SEM Robust extreme quantile estimation for Pareto-type tails through an exponential regression model Two-stage imputation method to handle missing data for categorical response variable Counterfactual image generation by disentangling data attributes with deep generative models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1