L. Alexandrescu, M. Georgescu, M. Sönmez, M. Nițuică, M. Stelescu, D. Gurau
{"title":"Biodegradable Polymeric Composites Based on Natural Rubber and Functionalized Post-Consumer Leather Waste","authors":"L. Alexandrescu, M. Georgescu, M. Sönmez, M. Nițuică, M. Stelescu, D. Gurau","doi":"10.24264/lfj.22.3.8","DOIUrl":null,"url":null,"abstract":"This work presents the development and characterization of biodegradable polymeric composites based on natural rubber and protein waste from finished post-consumer leather. Protein waste is cryogenically ground to min. 500 nm, functionalized by a mechanical process at temperature with potassium oleate (5%) and mixed in the composite in various proportions (5, 10, 20, 30, 50%). This composite will be made into a low-density product, with low cost, recovery and reuse of waste, and last but not least, biodegradable. The methodology for making the new materials involves the following steps: sorting waste, grinding, functionalization and compounding. These operations are easy to manage and do not involve new equipment. Compounding, the most important operation, will be carried out on a roller and the mixtures will be processed into finished products by compression in an electric press. The tested biodegradable composites were structurally and physico-mechanically characterized. Waste transformation (ground and functionalized) into new value-added products will lead to remarkable improvements in the life cycle of raw materials and the sustainable use of this waste, contributing to sustainability, improving eco-efficiency and economic efficiency and reducing the “pressure” of waste on the environment.","PeriodicalId":38857,"journal":{"name":"Leather and Footwear Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leather and Footwear Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24264/lfj.22.3.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the development and characterization of biodegradable polymeric composites based on natural rubber and protein waste from finished post-consumer leather. Protein waste is cryogenically ground to min. 500 nm, functionalized by a mechanical process at temperature with potassium oleate (5%) and mixed in the composite in various proportions (5, 10, 20, 30, 50%). This composite will be made into a low-density product, with low cost, recovery and reuse of waste, and last but not least, biodegradable. The methodology for making the new materials involves the following steps: sorting waste, grinding, functionalization and compounding. These operations are easy to manage and do not involve new equipment. Compounding, the most important operation, will be carried out on a roller and the mixtures will be processed into finished products by compression in an electric press. The tested biodegradable composites were structurally and physico-mechanically characterized. Waste transformation (ground and functionalized) into new value-added products will lead to remarkable improvements in the life cycle of raw materials and the sustainable use of this waste, contributing to sustainability, improving eco-efficiency and economic efficiency and reducing the “pressure” of waste on the environment.