Pengfei Wu, Jianting Ning, Xinyi Huang, Joseph K. Liu
{"title":"Differentially Oblivious Two-Party Pattern Matching With Sublinear Round Complexity","authors":"Pengfei Wu, Jianting Ning, Xinyi Huang, Joseph K. Liu","doi":"10.1109/TDSC.2022.3206758","DOIUrl":null,"url":null,"abstract":"Privacy-preserving pattern matching enables a user to find all occurrences of a pattern in a text without revealing any sensitive information. However, many previous works designed on homomorphic encryption suffer from expensive computational overhead and a simple way to use it can lead to potential input leakage via access pattern during the matching process. In this article, we propose a differentially oblivious pattern matching algorithm, called <monospace>DOPM</monospace>. It is deployed on two servers by taking a series of lightweight secret-sharing-based protocols as building blocks. In <monospace>DOPM</monospace>, we utilize a witness array and the single instruction multiple data (SIMD) technique to parallelize the algorithm, which achieves sublinear round complexity in performing two-party computation. Additionally, we formally define a new access pattern privacy in the context of differential privacy, named <inline-formula><tex-math notation=\"LaTeX\">$(\\epsilon,\\delta)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq1-3206758.gif\"/></alternatives></inline-formula>-differentially oblivious privacy (<inline-formula><tex-math notation=\"LaTeX\">$(\\epsilon,\\delta)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq2-3206758.gif\"/></alternatives></inline-formula>-DOP), and present a pair of differentially oblivious algorithms to read and write elements in an array without using oblivious shuffle. Detailed security analysis demonstrates that the proposed <monospace>DOPM</monospace> achieves the goal of protecting confidentiality and access pattern during the matching process. Finally, we benchmark our scheme on a real-world human genome dataset, and experimental results show that <monospace>DOPM</monospace> is <inline-formula><tex-math notation=\"LaTeX\">$10.9\\times$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>10</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq3-3206758.gif\"/></alternatives></inline-formula> faster than the brute-force matching, <inline-formula><tex-math notation=\"LaTeX\">$3.4-7.1\\times$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>4</mml:mn><mml:mo>-</mml:mo><mml:mn>7</mml:mn><mml:mo>.</mml:mo><mml:mn>1</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq4-3206758.gif\"/></alternatives></inline-formula> faster than two state-of-the-art approaches.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4101-4117"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3206758","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Privacy-preserving pattern matching enables a user to find all occurrences of a pattern in a text without revealing any sensitive information. However, many previous works designed on homomorphic encryption suffer from expensive computational overhead and a simple way to use it can lead to potential input leakage via access pattern during the matching process. In this article, we propose a differentially oblivious pattern matching algorithm, called DOPM. It is deployed on two servers by taking a series of lightweight secret-sharing-based protocols as building blocks. In DOPM, we utilize a witness array and the single instruction multiple data (SIMD) technique to parallelize the algorithm, which achieves sublinear round complexity in performing two-party computation. Additionally, we formally define a new access pattern privacy in the context of differential privacy, named $(\epsilon,\delta)$(ε,δ)-differentially oblivious privacy ($(\epsilon,\delta)$(ε,δ)-DOP), and present a pair of differentially oblivious algorithms to read and write elements in an array without using oblivious shuffle. Detailed security analysis demonstrates that the proposed DOPM achieves the goal of protecting confidentiality and access pattern during the matching process. Finally, we benchmark our scheme on a real-world human genome dataset, and experimental results show that DOPM is $10.9\times$10.9× faster than the brute-force matching, $3.4-7.1\times$3.4-7.1× faster than two state-of-the-art approaches.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.