Differentially Oblivious Two-Party Pattern Matching With Sublinear Round Complexity

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Dependable and Secure Computing Pub Date : 2023-09-01 DOI:10.1109/TDSC.2022.3206758
Pengfei Wu, Jianting Ning, Xinyi Huang, Joseph K. Liu
{"title":"Differentially Oblivious Two-Party Pattern Matching With Sublinear Round Complexity","authors":"Pengfei Wu, Jianting Ning, Xinyi Huang, Joseph K. Liu","doi":"10.1109/TDSC.2022.3206758","DOIUrl":null,"url":null,"abstract":"Privacy-preserving pattern matching enables a user to find all occurrences of a pattern in a text without revealing any sensitive information. However, many previous works designed on homomorphic encryption suffer from expensive computational overhead and a simple way to use it can lead to potential input leakage via access pattern during the matching process. In this article, we propose a differentially oblivious pattern matching algorithm, called <monospace>DOPM</monospace>. It is deployed on two servers by taking a series of lightweight secret-sharing-based protocols as building blocks. In <monospace>DOPM</monospace>, we utilize a witness array and the single instruction multiple data (SIMD) technique to parallelize the algorithm, which achieves sublinear round complexity in performing two-party computation. Additionally, we formally define a new access pattern privacy in the context of differential privacy, named <inline-formula><tex-math notation=\"LaTeX\">$(\\epsilon,\\delta)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq1-3206758.gif\"/></alternatives></inline-formula>-differentially oblivious privacy (<inline-formula><tex-math notation=\"LaTeX\">$(\\epsilon,\\delta)$</tex-math><alternatives><mml:math><mml:mrow><mml:mo>(</mml:mo><mml:mi>ε</mml:mi><mml:mo>,</mml:mo><mml:mi>δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq2-3206758.gif\"/></alternatives></inline-formula>-DOP), and present a pair of differentially oblivious algorithms to read and write elements in an array without using oblivious shuffle. Detailed security analysis demonstrates that the proposed <monospace>DOPM</monospace> achieves the goal of protecting confidentiality and access pattern during the matching process. Finally, we benchmark our scheme on a real-world human genome dataset, and experimental results show that <monospace>DOPM</monospace> is <inline-formula><tex-math notation=\"LaTeX\">$10.9\\times$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>10</mml:mn><mml:mo>.</mml:mo><mml:mn>9</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq3-3206758.gif\"/></alternatives></inline-formula> faster than the brute-force matching, <inline-formula><tex-math notation=\"LaTeX\">$3.4-7.1\\times$</tex-math><alternatives><mml:math><mml:mrow><mml:mn>3</mml:mn><mml:mo>.</mml:mo><mml:mn>4</mml:mn><mml:mo>-</mml:mo><mml:mn>7</mml:mn><mml:mo>.</mml:mo><mml:mn>1</mml:mn><mml:mo>×</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href=\"ning-ieq4-3206758.gif\"/></alternatives></inline-formula> faster than two state-of-the-art approaches.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"20 1","pages":"4101-4117"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TDSC.2022.3206758","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Privacy-preserving pattern matching enables a user to find all occurrences of a pattern in a text without revealing any sensitive information. However, many previous works designed on homomorphic encryption suffer from expensive computational overhead and a simple way to use it can lead to potential input leakage via access pattern during the matching process. In this article, we propose a differentially oblivious pattern matching algorithm, called DOPM. It is deployed on two servers by taking a series of lightweight secret-sharing-based protocols as building blocks. In DOPM, we utilize a witness array and the single instruction multiple data (SIMD) technique to parallelize the algorithm, which achieves sublinear round complexity in performing two-party computation. Additionally, we formally define a new access pattern privacy in the context of differential privacy, named $(\epsilon,\delta)$(ε,δ)-differentially oblivious privacy ($(\epsilon,\delta)$(ε,δ)-DOP), and present a pair of differentially oblivious algorithms to read and write elements in an array without using oblivious shuffle. Detailed security analysis demonstrates that the proposed DOPM achieves the goal of protecting confidentiality and access pattern during the matching process. Finally, we benchmark our scheme on a real-world human genome dataset, and experimental results show that DOPM is $10.9\times$10.9× faster than the brute-force matching, $3.4-7.1\times$3.4-7.1× faster than two state-of-the-art approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有次线性轮复杂度的差分无关两方模式匹配
保护隐私的模式匹配使用户能够在不泄露任何敏感信息的情况下找到文本中模式的所有出现情况。然而,以往许多关于同态加密的研究都存在计算开销大、使用方法简单、匹配过程中可能通过访问模式导致输入泄漏等问题。在本文中,我们提出了一种称为DOPM的差分无关模式匹配算法。它采用一系列轻量级的基于秘密共享的协议作为构建块,部署在两台服务器上。在DOPM中,我们利用见证数组和单指令多数据(SIMD)技术来并行化算法,在执行双方计算时实现了次线性的轮复杂度。此外,我们在差分隐私的背景下正式定义了一种新的访问模式隐私,命名为$(\epsilon,\delta)$ (ε,δ)-差分无关隐私($(\epsilon,\delta)$ (ε,δ)-DOP),并提出了一对差分无关算法来读写数组中的元素,而不使用无关shuffle。详细的安全性分析表明,所提出的DOPM在匹配过程中达到了保护机密性和访问模式的目的。最后,我们在现实世界的人类基因组数据集上对我们的方案进行了基准测试,实验结果表明DOPM比暴力匹配快$10.9\times$ 10.9倍,比两种最先进的方法快$3.4-7.1\times$ 3.4-7.1倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
期刊最新文献
Blockchain Based Auditable Access Control For Business Processes With Event Driven Policies. A Comprehensive Trusted Runtime for WebAssembly with Intel SGX TAICHI: Transform Your Secret Exploits Into Mine From a Victim’s Perspective Black Swan in Blockchain: Micro Analysis of Natural Forking Spenny: Extensive ICS Protocol Reverse Analysis via Field Guided Symbolic Execution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1