Combined Three Mechanisms Models for Membrane Fouling during Microfiltration

Hamed Koonani, M. Amirinejad
{"title":"Combined Three Mechanisms Models for Membrane Fouling during Microfiltration","authors":"Hamed Koonani, M. Amirinejad","doi":"10.22079/JMSR.2019.95781.1224","DOIUrl":null,"url":null,"abstract":"Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the successive effects of pore constriction, pore blockage and cake formation mechanisms but in the calculation of these models, the Hagen-Poisseuille law for the filtrate flux has been used. For the fourth and fifth models, the classical standard mechanism has been modified by the assumption of zero order time dependent equation for the particle deposition inside the pores. In these models, the zero-order standard mechanism has been used instead of the classical standard mechanism to combine with the pore blockage and then the cake formation mechanism and the Hagen-Poisseuille law. The ability of developed models for the prediction of experimental data for the bovine serum albumin (BSA) filtration was examined. The zero-order standard complete pore blockage-cake formation and the zero-order standard intermediate pore blockage-cake formation models provide fit experimental data, and predict well.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"5 1","pages":"274-282"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.95781.1224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 10

Abstract

Five new mathematical triple fouling models were developed to explore the flux decline behavior during the microfiltration. The first model was developed by the assumption of the successive effects of standard mechanism, intermediate pore blockage and cake formation by using the standard blocking flux expression in the model calculations. The second and third models also obtained by the successive effects of pore constriction, pore blockage and cake formation mechanisms but in the calculation of these models, the Hagen-Poisseuille law for the filtrate flux has been used. For the fourth and fifth models, the classical standard mechanism has been modified by the assumption of zero order time dependent equation for the particle deposition inside the pores. In these models, the zero-order standard mechanism has been used instead of the classical standard mechanism to combine with the pore blockage and then the cake formation mechanism and the Hagen-Poisseuille law. The ability of developed models for the prediction of experimental data for the bovine serum albumin (BSA) filtration was examined. The zero-order standard complete pore blockage-cake formation and the zero-order standard intermediate pore blockage-cake formation models provide fit experimental data, and predict well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微滤过程中膜污染的三种机理模型
开发了五个新的数学三重污垢模型来探索微滤过程中的通量下降行为。第一个模型是在假设标准机理、中间孔隙堵塞和滤饼形成的连续效应的基础上,利用模型计算中的标准堵塞通量表达式建立的。第二和第三个模型也是通过孔隙收缩、孔隙堵塞和滤饼形成机制的连续效应获得的,但在这些模型的计算中,使用了滤液通量的Hagen-Poisseuille定律。对于第四和第五个模型,通过假设孔隙内颗粒沉积的零阶时间相关方程,对经典的标准机制进行了修改。在这些模型中,使用了零阶标准机制而不是经典的标准机制来结合孔隙堵塞,然后结合滤饼形成机制和Hagen-Poissuille定律。检验了所开发的模型预测牛血清白蛋白(BSA)过滤实验数据的能力。零阶标准完全堵孔饼形成模型和零阶标准中间堵孔饼生成模型提供了拟合的实验数据,预测效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Membrane Science and Research
Journal of Membrane Science and Research Materials Science-Materials Science (miscellaneous)
CiteScore
4.00
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊介绍: The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.
期刊最新文献
Matrimid®5218/AO-PIM-1 Blend Membranes for Gas Separation Thin film nanocomposite (TFN) membrane comprising Pebax®1657 and porous organic polymers (POP) for favored CO2 separation New challenges and applications of supported liquid membrane systems based on facilitated transport in liquid phase separations of metallic species Effect of multi-staging in vacuum membrane distillation on productivity and temperature polarization Gas permselectivity of hyperbranched polybenzoxazole – silica hybrid membranes treated at different thermal protocols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1