{"title":"The impact of infected T lymphocyte burst rate and viral shedding rate on optimal treatment scheduling in a human immunodeficiency virus infection","authors":"Anuraag Bukkuri","doi":"10.11145/J.BIOMATH.2020.08.173","DOIUrl":null,"url":null,"abstract":"We consider a mathematical model of human immunodeficiency virus (HIV) infection dynamics of T lymphocyte (T cell), infected T cell, and viral populations under reverse transcriptase inhibitor (RTI) andprotease inhibitor (PI) treatment. Existence, uniqueness, and characterization of optimal treatment profiles which minimize total amount of drug used, viral, and infected T cell populations, while maximizing levels of T cells are determined analytically. Numerical optimal control experiments are also performed to illustrate how burst rate of infected T cells and shedding rate of virions impact optimal treatment profiles. Finally, a sensitivity analysis is performed to detect how model input parameters contribute to output variance.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/J.BIOMATH.2020.08.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a mathematical model of human immunodeficiency virus (HIV) infection dynamics of T lymphocyte (T cell), infected T cell, and viral populations under reverse transcriptase inhibitor (RTI) andprotease inhibitor (PI) treatment. Existence, uniqueness, and characterization of optimal treatment profiles which minimize total amount of drug used, viral, and infected T cell populations, while maximizing levels of T cells are determined analytically. Numerical optimal control experiments are also performed to illustrate how burst rate of infected T cells and shedding rate of virions impact optimal treatment profiles. Finally, a sensitivity analysis is performed to detect how model input parameters contribute to output variance.