Above- and belowground biomass and biomass carbon stocks in homegarden agroforestry systems of different age groups at three sites of southern and southwestern Ethiopia

IF 2.8 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES Carbon Management Pub Date : 2022-01-02 DOI:10.1080/17583004.2022.2133743
G. Kassa, T. Bekele, S. Demissew, T. Abebe
{"title":"Above- and belowground biomass and biomass carbon stocks in homegarden agroforestry systems of different age groups at three sites of southern and southwestern Ethiopia","authors":"G. Kassa, T. Bekele, S. Demissew, T. Abebe","doi":"10.1080/17583004.2022.2133743","DOIUrl":null,"url":null,"abstract":"Abstract As the loss of forests over time results in a net flux of carbon (C) into the atmosphere, the practice of agroforestry can combat this and serve as a long-term sink for CO2. Based on the inventory of 93 homegarden agroforestry systems (AFS) in three study sites and using a non-destructive method involving allometric equations, the research assessed aboveground (AG) and belowground (BG) biomass and biomass C stocks across sites and along age groups in homegarden AFS in southern and southwestern Ethiopia. Plant diversity parameters were also gathered on perennial plant species. Results indicate that the mean perennial plant species richness per homegarden agroforestry, and other diversity parameters varied strongly among sites (p < 0.05). Biomass C stocks range from 18.11 at Malo Ezo to 32.86 Mg C ha−1 at Saja Laften for AG, 3.97 to 7.10 Mg C ha−1 for BG, and 22.02 to 39.96 Mg C ha−1, for each respective sites, for the overall biomass C stocks were recorded within the homegarden agroforestry systems. In terms of age groups, the mean total biomass C stock did show numerical change from the initial, ≤10 years (22.49 Mg C ha−1) to the middle age group, >10 and ≤20 years (39.96 Mg C ha−1), but it was stagnant 20 years onward (28.49 Mg C ha−1). The homegarden agroforestry systems had the potential to store up to 80.81–112.30 Mg·ha−1 of CO2 equivalents across sites, and 82.53–104.55 Mg·ha−1 of CO2 equivalents along age groups. A positive relationship was noted between AG woody biomass C stocks and attributes such as woody species richness, and woody plant density. Considering the involvement of large numbers of homegardeners, future improvements and expansion of homegarden agroforestry to larger areas can enhance to a great extent the potential to sequester C and thereby mitigate climate change.","PeriodicalId":48941,"journal":{"name":"Carbon Management","volume":"13 1","pages":"531 - 549"},"PeriodicalIF":2.8000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/17583004.2022.2133743","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract As the loss of forests over time results in a net flux of carbon (C) into the atmosphere, the practice of agroforestry can combat this and serve as a long-term sink for CO2. Based on the inventory of 93 homegarden agroforestry systems (AFS) in three study sites and using a non-destructive method involving allometric equations, the research assessed aboveground (AG) and belowground (BG) biomass and biomass C stocks across sites and along age groups in homegarden AFS in southern and southwestern Ethiopia. Plant diversity parameters were also gathered on perennial plant species. Results indicate that the mean perennial plant species richness per homegarden agroforestry, and other diversity parameters varied strongly among sites (p < 0.05). Biomass C stocks range from 18.11 at Malo Ezo to 32.86 Mg C ha−1 at Saja Laften for AG, 3.97 to 7.10 Mg C ha−1 for BG, and 22.02 to 39.96 Mg C ha−1, for each respective sites, for the overall biomass C stocks were recorded within the homegarden agroforestry systems. In terms of age groups, the mean total biomass C stock did show numerical change from the initial, ≤10 years (22.49 Mg C ha−1) to the middle age group, >10 and ≤20 years (39.96 Mg C ha−1), but it was stagnant 20 years onward (28.49 Mg C ha−1). The homegarden agroforestry systems had the potential to store up to 80.81–112.30 Mg·ha−1 of CO2 equivalents across sites, and 82.53–104.55 Mg·ha−1 of CO2 equivalents along age groups. A positive relationship was noted between AG woody biomass C stocks and attributes such as woody species richness, and woody plant density. Considering the involvement of large numbers of homegardeners, future improvements and expansion of homegarden agroforestry to larger areas can enhance to a great extent the potential to sequester C and thereby mitigate climate change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
埃塞俄比亚南部和西南部3个样地不同年龄组家庭园林式农林业系统的地上和地下生物量和生物量碳储量
随着时间的推移,森林的减少会导致碳(C)的净通量进入大气,农林业的实践可以解决这一问题,并作为二氧化碳的长期汇。基于三个研究地点的93个家庭园林式农林业系统(AFS)的库存,并使用涉及异速生长方程的非破坏性方法,本研究评估了埃塞俄比亚南部和西南部家庭园林式农林业不同地点和不同年龄组的地上(AG)和地下(BG)生物量和生物量C储量。收集了多年生植物种类的植物多样性参数。结果表明:不同样地间多年生植物物种丰富度(p 10和≤20 a)差异较大(39.96 Mg C ha−1),但20 a后基本保持不变(28.49 Mg C ha−1)。家庭园林式农林业系统在不同地点的CO2当量可达80.81 ~ 112.30 Mg·ha−1,在不同年龄组的CO2当量可达82.53 ~ 104.55 Mg·ha−1。AG木本生物量C储量与木本物种丰富度、木本植物密度等属性呈显著正相关。考虑到大量家庭园丁的参与,未来对家庭农林业的改进和扩大可以在很大程度上提高固碳的潜力,从而减缓气候变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon Management
Carbon Management ENVIRONMENTAL SCIENCES-
CiteScore
5.80
自引率
3.20%
发文量
35
期刊介绍: Carbon Management is a scholarly peer-reviewed forum for insights from the diverse array of disciplines that enhance our understanding of carbon dioxide and other GHG interactions – from biology, ecology, chemistry and engineering to law, policy, economics and sociology. The core aim of Carbon Management is it to examine the options and mechanisms for mitigating the causes and impacts of climate change, which includes mechanisms for reducing emissions and enhancing the removal of GHGs from the atmosphere, as well as metrics used to measure performance of options and mechanisms resulting from international treaties, domestic policies, local regulations, environmental markets, technologies, industrial efforts and consumer choices. One key aim of the journal is to catalyse intellectual debate in an inclusive and scientific manner on the practical work of policy implementation related to the long-term effort of managing our global GHG emissions and impacts. Decisions made in the near future will have profound impacts on the global climate and biosphere. Carbon Management delivers research findings in an accessible format to inform decisions in the fields of research, education, management and environmental policy.
期刊最新文献
A commentary comparing the GHG Protocol and E-liability approaches to corporate GHG accounting and reporting Carbon reduction and nuclear energy policy U-turn: the necessity for an international treaty on small modular reactors (SMR) new nuclear technology Demystifying carbon removals in the context of offsetting for sub-global net-zero targets Is impact out of scope? A call for innovation in climate standards to inspire action across companies’ Spheres of Influence Designing a cost-effective policy mix for transition toward net-zero emissions: a case study of the mid-term plan by 2035 of Taiwan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1