Authentic Science Learning During COVID-19: The Adaptive Design of a SEM Outreach Activity

Ella Yonai, Eyal Shimoni, Keren Kahil, R. Blonder
{"title":"Authentic Science Learning During COVID-19: The Adaptive Design of a SEM Outreach Activity","authors":"Ella Yonai, Eyal Shimoni, Keren Kahil, R. Blonder","doi":"10.35459/tbp.2021.000206","DOIUrl":null,"url":null,"abstract":"\n Before March 2020, with the outbreak of the COVID-19 pandemic, remote instruction of science was only moderately developed compared with more traditional approaches for learning science. Since the outbreak, however, all formal education systems have been carried out in remote mode, and outreach activities that take place in a research or academic setting have usually been canceled, or there has been a search for innovative approaches to shift to digital space. Therefore, the development of learning and teaching strategies has currently focused on remote activities. In this study, a design-based approach was applied to transform an existing authentic science activity using a scanning electron microscope (SEM) from face-to-face to remote learning mode. The remote mode activity included the remote operation of the SEM by the participants. The goal was to formulate a general approach to transform authentic outreach activities from face-to-face to remote operation. To evaluate the design, we compared learners' perceived authenticity in the 2 modes and reflected on the process. Data were collected with a Likert-type questionnaire regarding participants' perceived authenticity. The results suggest that items of authenticity related to the experience of learning content have a positive potential for use in remote mode. The learners' experience of connecting with the scientists is an apparent disadvantage in remote mode. However, changes in communication technology or in the pedagogy of remote teaching is a promising direction for improving social experience.","PeriodicalId":72403,"journal":{"name":"Biophysicist (Rockville, Md.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysicist (Rockville, Md.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35459/tbp.2021.000206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Before March 2020, with the outbreak of the COVID-19 pandemic, remote instruction of science was only moderately developed compared with more traditional approaches for learning science. Since the outbreak, however, all formal education systems have been carried out in remote mode, and outreach activities that take place in a research or academic setting have usually been canceled, or there has been a search for innovative approaches to shift to digital space. Therefore, the development of learning and teaching strategies has currently focused on remote activities. In this study, a design-based approach was applied to transform an existing authentic science activity using a scanning electron microscope (SEM) from face-to-face to remote learning mode. The remote mode activity included the remote operation of the SEM by the participants. The goal was to formulate a general approach to transform authentic outreach activities from face-to-face to remote operation. To evaluate the design, we compared learners' perceived authenticity in the 2 modes and reflected on the process. Data were collected with a Likert-type questionnaire regarding participants' perceived authenticity. The results suggest that items of authenticity related to the experience of learning content have a positive potential for use in remote mode. The learners' experience of connecting with the scientists is an apparent disadvantage in remote mode. However, changes in communication technology or in the pedagogy of remote teaching is a promising direction for improving social experience.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19期间的真实科学学习:SEM外展活动的适应性设计
2020年3月前,随着新冠肺炎疫情的爆发,与传统的科学学习方式相比,远程科学教学只得到了适度发展。然而,自疫情爆发以来,所有正规教育系统都以远程模式开展,在研究或学术环境中开展的外展活动通常被取消,或者一直在寻找转向数字空间的创新方法。因此,学习和教学策略的发展目前主要集中在远程活动上。在本研究中,采用基于设计的方法,将现有的扫描电子显微镜(SEM)真实科学活动从面对面转变为远程学习模式。远程模式活动包括参与者远程操作扫描电镜。目标是制订一种一般性办法,将真正的外联活动从面对面活动转变为远程活动。为了评估设计,我们比较了学习者在两种模式下的感知真实性,并对过程进行了反思。数据收集与李克特型问卷关于参与者的感知真实性。结果表明,与学习内容体验相关的真实性项目在远程模式下具有积极的使用潜力。在远程模式下,学习者与科学家联系的体验是一个明显的劣势。然而,通信技术或远程教学方法的变化是改善社会体验的一个有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching Image Processing and Optical Engineering to University Biology Students Implementation of Specifications Grading in an Upper-Division Chemical Biology Lecture Course Undergraduate Tutorial for Simulating Flocking with the Vicsek Model Bringing Biophysics Outreach to a Rural County Fair Modular, Articulated Models of DNA and Peptide Nucleic Acids for Nanotechnology Education
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1