Neural Network Identification and Direct Adaptive Fuzzy Neural Network (DAFNN) Controller for Unknown Nonlinear Non-affine Pneumatic Servo System

IF 0.7 Q4 ENGINEERING, MECHANICAL International Journal of Fluid Power Pub Date : 2021-05-01 DOI:10.13052/IJFP1439-9776.2211
Peyman Mawlani, M. Arbabtafti
{"title":"Neural Network Identification and Direct Adaptive Fuzzy Neural Network (DAFNN) Controller for Unknown Nonlinear Non-affine Pneumatic Servo System","authors":"Peyman Mawlani, M. Arbabtafti","doi":"10.13052/IJFP1439-9776.2211","DOIUrl":null,"url":null,"abstract":"In this paper, a direct adaptive fuzzy neural network (DAFNN) controller for trajectory tracking control of the non-linear non-affine pneumatic servo system is presented. First, using a neural network identifier, the non-linear dynamics of a real pneumatic servo system is simulated. By comparing the output of the neural network and the output of the experimental setup, it is observed that the non-linear pneumatic actuator system is well-identified using neural networks. By incorporating the Lyapunov stability theorem, the adaptive laws for the parameters of the controller are obtained, parameter boundedness and stability of the closed-loop system are guaranteed. Finally, practical results are successfully implemented for trajectory tracking control of the pneumatic servo system, in which the effect of the simultaneous updating of the antecedent and consequent’s parameters of the fuzzy neural network controller has been investigated. The tracking error ±1.3mm and ±1 mm for proposed updating method compared to ±2.5mm and ±3.5mm, for a case that the weigh parameters are merely adjusted, are obtained. The results indicate the proposed adjustment method improves the performance of the controller in the presence of unknown nonlinearities and dynamics uncertainty.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":"1 1","pages":"1–44-1–44"},"PeriodicalIF":0.7000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/IJFP1439-9776.2211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a direct adaptive fuzzy neural network (DAFNN) controller for trajectory tracking control of the non-linear non-affine pneumatic servo system is presented. First, using a neural network identifier, the non-linear dynamics of a real pneumatic servo system is simulated. By comparing the output of the neural network and the output of the experimental setup, it is observed that the non-linear pneumatic actuator system is well-identified using neural networks. By incorporating the Lyapunov stability theorem, the adaptive laws for the parameters of the controller are obtained, parameter boundedness and stability of the closed-loop system are guaranteed. Finally, practical results are successfully implemented for trajectory tracking control of the pneumatic servo system, in which the effect of the simultaneous updating of the antecedent and consequent’s parameters of the fuzzy neural network controller has been investigated. The tracking error ±1.3mm and ±1 mm for proposed updating method compared to ±2.5mm and ±3.5mm, for a case that the weigh parameters are merely adjusted, are obtained. The results indicate the proposed adjustment method improves the performance of the controller in the presence of unknown nonlinearities and dynamics uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未知非线性非仿射气动伺服系统的神经网络辨识与直接自适应模糊神经网络(DAFNN)控制器
提出了一种直接自适应模糊神经网络(DAFNN)控制器,用于非线性非仿射气动伺服系统的轨迹跟踪控制。首先,利用神经网络辨识器对实际气动伺服系统的非线性动力学进行了仿真。将神经网络的输出与实验装置的输出进行比较,发现神经网络可以很好地识别非线性气动执行器系统。结合Lyapunov稳定性定理,得到了控制器参数的自适应规律,保证了闭环系统的参数有界性和稳定性。最后,将其应用于气动伺服系统的轨迹跟踪控制中,研究了模糊神经网络控制器前后参数同步更新的影响。与仅调整称重参数情况下的±2.5mm和±3.5mm相比,所提更新方法的跟踪误差分别为±1.3mm和±1 mm。结果表明,所提出的调整方法可以改善控制器在存在未知非线性和动力学不确定性时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
期刊最新文献
A Review of Pilot-operated Hydraulic Valves – Development, Challenges, and a Comparative Study Facilitating Energy Monitoring and Fault Diagnosis of Pneumatic Cylinders with Exergy and Machine Learning Performance Analysis of a Pressurized Assembly with a Reinforced O-ring Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake Effect of Blowing Ratio on Turbine Blade Air Film Cooling Under Different Engine Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1