Comparison of the stress intensity factor for a longitudinal crack in an elliptical base gas pipe, using FEM vs. DCT methods

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Forces in mechanics Pub Date : 2023-09-06 DOI:10.1016/j.finmec.2023.100233
Luis Espinoza , Jose Antonio Bea , Sourojeet Chakraborty , Daniela Galatro
{"title":"Comparison of the stress intensity factor for a longitudinal crack in an elliptical base gas pipe, using FEM vs. DCT methods","authors":"Luis Espinoza ,&nbsp;Jose Antonio Bea ,&nbsp;Sourojeet Chakraborty ,&nbsp;Daniela Galatro","doi":"10.1016/j.finmec.2023.100233","DOIUrl":null,"url":null,"abstract":"<div><p>While several theoretical and experimental studies for cracks in piping exist, most pertain to pipelines, equipment, or fittings under pressure conditions or under stress corrosion conditions at welding. Element finite Method models have occasionally supplemented experimental methods, to investigate such operational fails. In this approach we explore technical options to comprehensively understand crack propagations, by first, evaluating the Stress Intensity Factor <span><math><mrow><mo>(</mo><msub><mi>K</mi><mi>I</mi></msub><mo>)</mo></mrow></math></span> using ANSYS Parametric design language then, comparing with the Displacement Correlation Technique, for an elliptical base gas piping (20″APL Gr. B) suffering a longitudinal welding-induced crack, under a compression of 1.86 MPa. The <span><math><mrow><msub><mi>K</mi><mi>I</mi></msub><mspace></mspace></mrow></math></span>value for an Electric Resistance Welding crack was calculated for the two-dimensional plane, for a quarter-length of propagated crack along the elliptical front. The <span><math><msub><mi>K</mi><mi>I</mi></msub></math></span> value estimates are 0.94x<span><math><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> MPa<span><math><msqrt><mi>m</mi></msqrt></math></span> from ANSYS Parametric design language vs. 0.7<span><math><mrow><mn>0</mn><mi>x</mi><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> MPa<span><math><mrow><msqrt><mi>m</mi></msqrt><mspace></mspace></mrow></math></span>from DCT the two methods are close less than 1. These results were compared with the theorical stress intensity factor for elliptical cracks by Broek<span><sup>1</sup></span> David called elementary engineering fracture mechanics where the values were 0.5x<span><math><msup><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> MPa<span><math><msqrt><mi>m</mi></msqrt></math></span>. We found that the proposed FEM method for estimating <span><math><mrow><mo>(</mo><msub><mi>K</mi><mi>I</mi></msub><mo>)</mo></mrow></math></span>is the approach that is closest to the theoretical value.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While several theoretical and experimental studies for cracks in piping exist, most pertain to pipelines, equipment, or fittings under pressure conditions or under stress corrosion conditions at welding. Element finite Method models have occasionally supplemented experimental methods, to investigate such operational fails. In this approach we explore technical options to comprehensively understand crack propagations, by first, evaluating the Stress Intensity Factor (KI) using ANSYS Parametric design language then, comparing with the Displacement Correlation Technique, for an elliptical base gas piping (20″APL Gr. B) suffering a longitudinal welding-induced crack, under a compression of 1.86 MPa. The KIvalue for an Electric Resistance Welding crack was calculated for the two-dimensional plane, for a quarter-length of propagated crack along the elliptical front. The KI value estimates are 0.94x(10)3 MPam from ANSYS Parametric design language vs. 0.70x(10)2 MPamfrom DCT the two methods are close less than 1. These results were compared with the theorical stress intensity factor for elliptical cracks by Broek1 David called elementary engineering fracture mechanics where the values were 0.5x(10)1 MPam. We found that the proposed FEM method for estimating (KI)is the approach that is closest to the theoretical value.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用有限元法和离散余弦变换法比较椭圆基燃气管道纵向裂纹的应力强度因子
虽然存在一些关于管道裂缝的理论和实验研究,但大多数都是关于管道、设备或配件在压力条件下或焊接时的应力腐蚀条件下的研究。单元有限方法模型偶尔会补充实验方法,以研究这种操作失败。在这种方法中,我们探索了全面理解裂纹扩展的技术选择,首先,使用ANSYS参数化设计语言评估应力强度因子(KI),然后与位移相关技术进行比较,在1.86 MPa的压缩下,对椭圆基燃气管道(20″APL Gr. B)产生纵向焊接裂纹。在二维平面上,计算了沿椭圆前沿延伸1 / 4长度的电阻焊裂纹的kiv值。来自ANSYS参数化设计语言的KI值估计值为0.94x(10)−3 MPam,而来自DCT的KI值估计值为0.70x(10)−2 MPam,两种方法接近小于1。这些结果与Broek1 David(称为初级工程断裂力学)的椭圆裂纹的理论应力强度因子进行了比较,其值为0.5x(10)−1 MPam。我们发现,所提出的估算KI的有限元方法是最接近理论值的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
期刊最新文献
Response of circular type sandwich panel using JUCO-glass fiber with PU foam under three-point bending loading An improved moment distribution method for the analysis of concrete frames Editorial Board Mass minimization approach for the optimal preliminary design of CMC inner liners in rocket thrust chambers Phase-field modelings of fracture investigate the influence of interfacial effects on damage and optimal material distribution in brittle inclusion-matrix structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1