Multi-parameter regression survival modelling with random effects

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-11-16 DOI:10.1177/1471082x221117377
Fatima-Zahra Jaouimaa, I. Ha, Kevin Burke
{"title":"Multi-parameter regression survival modelling with random effects","authors":"Fatima-Zahra Jaouimaa, I. Ha, Kevin Burke","doi":"10.1177/1471082x221117377","DOIUrl":null,"url":null,"abstract":"We consider a parametric modelling approach for survival data where covariates are allowed to enter the model through multiple distributional parameters (i.e., scale and shape). This is in contrast with the standard convention of having a single covariate-dependent parameter, typically the scale. Taking what is referred to as a multi-parameter regression (MPR) approach to modelling has been shown to produce flexible and robust models with relatively low model complexity cost. However, it is very common to have clustered data arising from survival analysis studies, and this is something that is under developed in the MPR context. The purpose of this article is to extend MPR models to handle multivariate survival data by introducing random effects in both the scale and the shape regression components. We consider a variety of possible dependence structures for these random effects (independent, shared and correlated), and estimation proceeds using a h-likelihood approach. The performance of our estimation procedure is investigated by a way of an extensive simulation study, and the merits of our modelling approach are illustrated through applications to two real data examples, a lung cancer dataset and a bladder cancer dataset.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082x221117377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a parametric modelling approach for survival data where covariates are allowed to enter the model through multiple distributional parameters (i.e., scale and shape). This is in contrast with the standard convention of having a single covariate-dependent parameter, typically the scale. Taking what is referred to as a multi-parameter regression (MPR) approach to modelling has been shown to produce flexible and robust models with relatively low model complexity cost. However, it is very common to have clustered data arising from survival analysis studies, and this is something that is under developed in the MPR context. The purpose of this article is to extend MPR models to handle multivariate survival data by introducing random effects in both the scale and the shape regression components. We consider a variety of possible dependence structures for these random effects (independent, shared and correlated), and estimation proceeds using a h-likelihood approach. The performance of our estimation procedure is investigated by a way of an extensive simulation study, and the merits of our modelling approach are illustrated through applications to two real data examples, a lung cancer dataset and a bladder cancer dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有随机效应的多参数回归生存模型
我们考虑了生存数据的参数化建模方法,其中允许协变量通过多个分布参数(即规模和形状)进入模型。这与具有单个协变量相关参数(通常是标度)的标准惯例相反。采用所谓的多参数回归(MPR)方法进行建模已被证明可以产生灵活且鲁棒的模型,且模型复杂性成本相对较低。然而,从生存分析研究中获得聚类数据是很常见的,这是在MPR背景下尚未开发的东西。本文的目的是通过在规模和形状回归成分中引入随机效应,扩展MPR模型来处理多变量生存数据。我们考虑了这些随机效应的各种可能的依赖结构(独立、共享和相关),并使用h-似然方法进行估计。通过广泛的模拟研究来研究我们的估计过程的性能,并通过两个实际数据实例(肺癌数据集和膀胱癌数据集)的应用来说明我们的建模方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1