Modelling of the swelling behaviour of a fire retarded material under a cone calorimeter

IF 1.9 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Fire Sciences Pub Date : 2023-06-06 DOI:10.1177/07349041231177183
Manon Fleurotte, G. Debenest, O. Authier, G. Fontaine, S. Bourbigot, A. Amokrane
{"title":"Modelling of the swelling behaviour of a fire retarded material under a cone calorimeter","authors":"Manon Fleurotte, G. Debenest, O. Authier, G. Fontaine, S. Bourbigot, A. Amokrane","doi":"10.1177/07349041231177183","DOIUrl":null,"url":null,"abstract":"Modelling the swelling behaviour of intumescent materials is an important and challenging issue because this phenomenon influences their pyrolysis process. It must be therefore considered to improve the predictability of pyrolysis models. The objective of this work was to implement a swelling model in the pyrolysis code Gpyro in order to predict the behaviour of a sample of ethylene vinyl acetate containing aluminium trihydroxide (EVA/ATH) polymer studied by cone calorimetry. This polymer is used for making the external sheath of electrical cables. Unlike existing works in the literature, the model implemented here, and adapted to EVA/ATH, does not require information on the densities of the initial and final materials, which makes it more predictive. To characterize the swelling, experiments were carried out to measure the evolution of the sample thickness as a function of time. The mass loss and the back surface temperature of the sample were also measured. This was done under different operating conditions. These measurements are compared with the swelling predicted by the model and the results were found to be in good agreement. The model can be extended easily to other materials.","PeriodicalId":15772,"journal":{"name":"Journal of Fire Sciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fire Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/07349041231177183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Modelling the swelling behaviour of intumescent materials is an important and challenging issue because this phenomenon influences their pyrolysis process. It must be therefore considered to improve the predictability of pyrolysis models. The objective of this work was to implement a swelling model in the pyrolysis code Gpyro in order to predict the behaviour of a sample of ethylene vinyl acetate containing aluminium trihydroxide (EVA/ATH) polymer studied by cone calorimetry. This polymer is used for making the external sheath of electrical cables. Unlike existing works in the literature, the model implemented here, and adapted to EVA/ATH, does not require information on the densities of the initial and final materials, which makes it more predictive. To characterize the swelling, experiments were carried out to measure the evolution of the sample thickness as a function of time. The mass loss and the back surface temperature of the sample were also measured. This was done under different operating conditions. These measurements are compared with the swelling predicted by the model and the results were found to be in good agreement. The model can be extended easily to other materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锥形量热计下阻燃材料膨胀行为的建模
对膨胀材料的膨胀行为进行建模是一个重要且具有挑战性的问题,因为这种现象会影响其热解过程。因此,必须考虑提高热解模型的可预测性。这项工作的目的是在热解代码Gpyro中实现溶胀模型,以预测通过锥形量热法研究的含乙烯-乙酸乙烯酯-氢氧化铝(EVA/ATH)聚合物样品的行为。这种聚合物用于制造电缆的外护套。与文献中现有的工作不同,这里实施的模型适用于EVA/ATH,不需要关于初始和最终材料密度的信息,这使其更具预测性。为了表征溶胀,进行了实验以测量样品厚度随时间的变化。还测量了样品的质量损失和背面温度。这是在不同的操作条件下完成的。将这些测量结果与模型预测的溶胀进行比较,发现结果非常一致。该模型可以很容易地扩展到其他材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Fire Sciences
Journal of Fire Sciences 工程技术-材料科学:综合
CiteScore
4.00
自引率
0.00%
发文量
14
审稿时长
2.5 months
期刊介绍: The Journal of Fire Sciences is a leading journal for the reporting of significant fundamental and applied research that brings understanding of fire chemistry and fire physics to fire safety. Its content is aimed toward the prevention and mitigation of the adverse effects of fires involving combustible materials, as well as development of new tools to better address fire safety needs. The Journal of Fire Sciences covers experimental or theoretical studies of fire initiation and growth, flame retardant chemistry, fire physics relative to material behavior, fire containment, fire threat to people and the environment and fire safety engineering. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
An experimental case study of escooter fire in a four-story building Measuring the fire growth potential of combustible solids using a cone calorimeter Reduced scale test bench for investigating the upward flame heat impact on external thermal insulation composite system facades Computational study on the glowing combustion of a wooden ember landing on a non-reacting substrate Fire-induced flows for complex fire scenarios in a mechanically ventilated two-storey structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1