{"title":"Fick and Maxwell-Stefan Diffusion Coefficients in the Ternary Liquid Mixture of Acetone-Methanol-Chloroform","authors":"Abolhasan Ameri, N. Setoodeh","doi":"10.22036/PCR.2021.281733.1907","DOIUrl":null,"url":null,"abstract":"Fick diffusion coefficients are calculated by means of molecular simulation for liquid mixtures containing acetone, methanol and chloroform at 1 atm and 298 K for different compositions. For this means, Maxwell-Stefan (MS) diffusion coefficients were calculated using physical properties of the components and thermodynamic factors, Γ, using three different models of Wilson, NRTL and UNIQUAC. Because of the lack of experimental data for Fick diffusivities for ternary system, the validity of the model was tested by comparing Fick diffusivities obtained for binary subsystems with experimental data for acetone- chloroform system. The results were in good agreement. So the Fick coefficients, Maxwell-Stefan diffusion coefficient and the thermodynamic factors were predicted for the ternary mixture as well as its binary subsystems by molecular simulation in a consistent manner. The presented ternary diffusion data should facilitate the development of aggregated predictive models for diffusion coefficients of polar and hydrogen-bonding systems and allows for an efficient and consistent prediction of multicomponent Fick diffusion coefficients from molecular models.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2021.281733.1907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fick diffusion coefficients are calculated by means of molecular simulation for liquid mixtures containing acetone, methanol and chloroform at 1 atm and 298 K for different compositions. For this means, Maxwell-Stefan (MS) diffusion coefficients were calculated using physical properties of the components and thermodynamic factors, Γ, using three different models of Wilson, NRTL and UNIQUAC. Because of the lack of experimental data for Fick diffusivities for ternary system, the validity of the model was tested by comparing Fick diffusivities obtained for binary subsystems with experimental data for acetone- chloroform system. The results were in good agreement. So the Fick coefficients, Maxwell-Stefan diffusion coefficient and the thermodynamic factors were predicted for the ternary mixture as well as its binary subsystems by molecular simulation in a consistent manner. The presented ternary diffusion data should facilitate the development of aggregated predictive models for diffusion coefficients of polar and hydrogen-bonding systems and allows for an efficient and consistent prediction of multicomponent Fick diffusion coefficients from molecular models.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.