{"title":"Design and Development of Low Power Clock and Data Recovery Circuit for Asynchronous Network on Chips","authors":"T. Nagalaxmi, E. S. Rao, P.Chandrasekar","doi":"10.29292/jics.v17i3.640","DOIUrl":null,"url":null,"abstract":"Today, the current buffered router Synchronous Network on Chip architecture consumes significant chip area and power. Therefore, based on biased routing, buffer-less routers have recently been predicted as a possible solution, but they suffer from contiguous port assignments, slow critical paths, and increased latency. Asynchronous Network on Chip architecture emerges as the best option for avoiding glitches and consuming less power. A clock and data recovery circuit is used to recover the clock signal from the router-generated data and reduce power consumption in a Multiprocessor System on Chip. This paper proposes a clock and data recovery circuit design for an asynchronous Network on Chip. The proposed 4x4 Mesh router architecture implemented in this paper can process 64-bit of data samples with a depth of 64. When comparing the proposed architecture with the existing NoC architecture, the proposed architecture has shown a power reduction of 5times. The proposed architecture has consumed a total power of 0.103W.","PeriodicalId":39974,"journal":{"name":"Journal of Integrated Circuits and Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29292/jics.v17i3.640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Today, the current buffered router Synchronous Network on Chip architecture consumes significant chip area and power. Therefore, based on biased routing, buffer-less routers have recently been predicted as a possible solution, but they suffer from contiguous port assignments, slow critical paths, and increased latency. Asynchronous Network on Chip architecture emerges as the best option for avoiding glitches and consuming less power. A clock and data recovery circuit is used to recover the clock signal from the router-generated data and reduce power consumption in a Multiprocessor System on Chip. This paper proposes a clock and data recovery circuit design for an asynchronous Network on Chip. The proposed 4x4 Mesh router architecture implemented in this paper can process 64-bit of data samples with a depth of 64. When comparing the proposed architecture with the existing NoC architecture, the proposed architecture has shown a power reduction of 5times. The proposed architecture has consumed a total power of 0.103W.
期刊介绍:
This journal will present state-of-art papers on Integrated Circuits and Systems. It is an effort of both Brazilian Microelectronics Society - SBMicro and Brazilian Computer Society - SBC to create a new scientific journal covering Process and Materials, Device and Characterization, Design, Test and CAD of Integrated Circuits and Systems. The Journal of Integrated Circuits and Systems is published through Special Issues on subjects to be defined by the Editorial Board. Special issues will publish selected papers from both Brazilian Societies annual conferences, SBCCI - Symposium on Integrated Circuits and Systems and SBMicro - Symposium on Microelectronics Technology and Devices.