{"title":"Durability of Vacuum Infusion Tooling Produced from Fused Granular Fabrication Additive Manufacturing.","authors":"Nathan Northrup, Jason M Weaver, Andrew R George","doi":"10.1089/3dp.2022.0130","DOIUrl":null,"url":null,"abstract":"<p><p>Fused Granular Fabrication Additive Manufacturing (FGF AM) has the capability to create tooling that is lower cost than conventionally manufactured tooling and still has sufficient properties for many applications. A vacuum infusion (VI) mold was printed from fiberglass-acrylonitrile butadiene styrene (ABS) and evaluated for wear and suitability for small VI runs. The mold was designed to accentuate high wear as a \"worst case\" scenario. The mold was able to produce 10 parts successfully before any noticeable change occurred to the surface finish. By 14 parts, the surface finish had roughened sufficiently that demolding was difficult and resulted in damage to the part. Profilometry measurements showed a 7 × increase in roughness over the run. No significant tool wear or change in geometry was detected. Even longer life would be expected for typical tooling designs since the test mold was deliberately designed to accentuate wear and demolding issues. Based on these results, similar FGF molds are a feasible option for short run VI production for prototyping or low-volume composites manufacturing, possibly at lower cost and quicker turnaround time than machined aluminum molds.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11057564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2022.0130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Fused Granular Fabrication Additive Manufacturing (FGF AM) has the capability to create tooling that is lower cost than conventionally manufactured tooling and still has sufficient properties for many applications. A vacuum infusion (VI) mold was printed from fiberglass-acrylonitrile butadiene styrene (ABS) and evaluated for wear and suitability for small VI runs. The mold was designed to accentuate high wear as a "worst case" scenario. The mold was able to produce 10 parts successfully before any noticeable change occurred to the surface finish. By 14 parts, the surface finish had roughened sufficiently that demolding was difficult and resulted in damage to the part. Profilometry measurements showed a 7 × increase in roughness over the run. No significant tool wear or change in geometry was detected. Even longer life would be expected for typical tooling designs since the test mold was deliberately designed to accentuate wear and demolding issues. Based on these results, similar FGF molds are a feasible option for short run VI production for prototyping or low-volume composites manufacturing, possibly at lower cost and quicker turnaround time than machined aluminum molds.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.