Towards Human-Centered AI: Psychological concepts as foundation for empirical XAI research

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2021-11-17 DOI:10.1515/itit-2021-0047
Katharina Weitz
{"title":"Towards Human-Centered AI: Psychological concepts as foundation for empirical XAI research","authors":"Katharina Weitz","doi":"10.1515/itit-2021-0047","DOIUrl":null,"url":null,"abstract":"Abstract Human-Centered AI is a widely requested goal for AI applications. To reach this is explainable AI promises to help humans to understand the inner workings and decisions of AI systems. While different XAI techniques have been developed to shed light on AI systems, it is still unclear how end-users with no experience in machine learning perceive these. Psychological concepts like trust, mental models, and self-efficacy can serve as instruments to evaluate XAI approaches in empirical studies with end-users. First results in applications for education, healthcare, and industry suggest that one XAI does not fit all. Instead, the design of XAI has to consider user needs, personal background, and the specific task of the AI system.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2021-0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Human-Centered AI is a widely requested goal for AI applications. To reach this is explainable AI promises to help humans to understand the inner workings and decisions of AI systems. While different XAI techniques have been developed to shed light on AI systems, it is still unclear how end-users with no experience in machine learning perceive these. Psychological concepts like trust, mental models, and self-efficacy can serve as instruments to evaluate XAI approaches in empirical studies with end-users. First results in applications for education, healthcare, and industry suggest that one XAI does not fit all. Instead, the design of XAI has to consider user needs, personal background, and the specific task of the AI system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
走向以人为中心的AI:心理学概念作为实证AI研究的基础
摘要以人为中心的人工智能是人工智能应用广泛要求的目标。为了达到这一点,人工智能承诺帮助人类理解人工智能系统的内部工作和决策。虽然已经开发了不同的XAI技术来阐明人工智能系统,但尚不清楚没有机器学习经验的最终用户是如何看待这些系统的。信任、心理模型和自我效能等心理学概念可以作为评估XAI方法的工具,用于对最终用户进行实证研究。教育、医疗保健和工业应用的初步结果表明,一个XAI并不适合所有人。相反,XAI的设计必须考虑用户需求、个人背景和人工智能系统的具体任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1