N. Mari , G.L. Eggers , J. Filiberto , C. Carli , G. Pratesi , M. Alvaro , P. D'Incecco , M. Cardinale , G. Di Achille
{"title":"Boninites as Mercury lava analogues: Geochemical and spectral measurements from pillow lavas on Cyprus island","authors":"N. Mari , G.L. Eggers , J. Filiberto , C. Carli , G. Pratesi , M. Alvaro , P. D'Incecco , M. Cardinale , G. Di Achille","doi":"10.1016/j.pss.2023.105764","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the absence of Mercurian rocks or meteorites in our collections, komatiites and boninites are often proposed as the best analogue rocks to Mercury lavas. However, despite previous work on the possible analogy between komatiites and Mercury rocks, similar work has not been done for boninites. In this work, we investigate the whole-rock geochemistry and visible/near-infrared (VNIR) spectroscopy of boninitic material collected at three specific areas of the Troodos Massif (Cyprus island). The objective is to evaluate if collected boninites, these along with other boninites present in the literature, can be analogous to Mercury geochemical terranes. On average, we find an unusually high MgO/SiO</span><sub>2</sub><span> ratio (0.68) for the boninites from the Troodos Massif compared with previous boninite analysis. This MgO/SiO</span><sub>2</sub> value is most closely related to the high-Mg regions of Mercury, while the average Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub><span><span> ratio (0.25) is consistent with the Mercurian intermediate terrain and to Mercury's largest pyroclastic deposit. In addition, further affinity to the high-Mg regions and the intermediate terrains of Mercury are shown in regard to Si vs. Mg, Si vs. Ca, and Si vs. Fe content for one sample in particular. We then conduct magmatic modeling on this specific sample to provide a possible parental melt composition for analogue Mercurian </span>magmas. In conclusion, we suggest these specific locations on the Troodos Massif in Cyprus as good geochemical analogue sites for the high-Mg regions of Mercury and explain how boninites could be important benchmark samples for the chemical and spectral data expected from the BepiColombo mission.</span></p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"236 ","pages":"Article 105764"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063323001332","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the absence of Mercurian rocks or meteorites in our collections, komatiites and boninites are often proposed as the best analogue rocks to Mercury lavas. However, despite previous work on the possible analogy between komatiites and Mercury rocks, similar work has not been done for boninites. In this work, we investigate the whole-rock geochemistry and visible/near-infrared (VNIR) spectroscopy of boninitic material collected at three specific areas of the Troodos Massif (Cyprus island). The objective is to evaluate if collected boninites, these along with other boninites present in the literature, can be analogous to Mercury geochemical terranes. On average, we find an unusually high MgO/SiO2 ratio (0.68) for the boninites from the Troodos Massif compared with previous boninite analysis. This MgO/SiO2 value is most closely related to the high-Mg regions of Mercury, while the average Al2O3/SiO2 ratio (0.25) is consistent with the Mercurian intermediate terrain and to Mercury's largest pyroclastic deposit. In addition, further affinity to the high-Mg regions and the intermediate terrains of Mercury are shown in regard to Si vs. Mg, Si vs. Ca, and Si vs. Fe content for one sample in particular. We then conduct magmatic modeling on this specific sample to provide a possible parental melt composition for analogue Mercurian magmas. In conclusion, we suggest these specific locations on the Troodos Massif in Cyprus as good geochemical analogue sites for the high-Mg regions of Mercury and explain how boninites could be important benchmark samples for the chemical and spectral data expected from the BepiColombo mission.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research