Y. Taranenko, R. Mygushchenko, O. Kropachek, G. Suchkov, Yu. O. Plesnetsov
{"title":"Minimization of errors in discrete wavelet filtering of signals during ultrasonic measurements and testing","authors":"Y. Taranenko, R. Mygushchenko, O. Kropachek, G. Suchkov, Yu. O. Plesnetsov","doi":"10.24027/2306-7039.4.2021.250433","DOIUrl":null,"url":null,"abstract":"Error minimizing methods for discrete wavelet filtering of ultrasonic meter signals are considered. For this purpose, special model signals containing various measuring pulses are generated. The psi function of the Daubechies 28 wavelet is used to generate the pulses. Noise is added to the generated pulses. A comparative analysis of the two filtering algorithms is performed. The first algorithm is to limit the amount of detail of the wavelet decomposition coefficients in relation to signal interference. The minimum value of the root mean square error of wavelet decomposition signal deviation which is restored at each level from the initial signal without noise is determined. The second algorithm uses a separate threshold for each level of wavelet decomposition to limit the magnitude of the detail coefficients that are proportional to the standard deviation. Like in the first algorithm, the task is to determine the level of wavelet decomposition at which the minimum standard error is achieved. A feature of both algorithms is an expanded base of discrete wavelets ‒ families of Biorthogonal, Coiflet, Daubechies, Discrete Meyer, Haar, Reverse Biorthogonal, Symlets (106 in total) and threshold functions garotte, garrote, greater, hard, less, soft (6 in total). The model function uses random variables in both algorithms, so the averaging base is used to obtain stable results. Given features of algorithm construction allowed to reveal efficiency of ultrasonic signal filtering on the first algorithm presented in the form of oscilloscopic images. The use of a separate threshold for limiting the number of detail coefficients for each level of discrete wavelet decomposition using the given wavelet base and threshold functions has reduced the filtering error.","PeriodicalId":40775,"journal":{"name":"Ukrainian Metrological Journal","volume":null,"pages":null},"PeriodicalIF":0.1000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Metrological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24027/2306-7039.4.2021.250433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Error minimizing methods for discrete wavelet filtering of ultrasonic meter signals are considered. For this purpose, special model signals containing various measuring pulses are generated. The psi function of the Daubechies 28 wavelet is used to generate the pulses. Noise is added to the generated pulses. A comparative analysis of the two filtering algorithms is performed. The first algorithm is to limit the amount of detail of the wavelet decomposition coefficients in relation to signal interference. The minimum value of the root mean square error of wavelet decomposition signal deviation which is restored at each level from the initial signal without noise is determined. The second algorithm uses a separate threshold for each level of wavelet decomposition to limit the magnitude of the detail coefficients that are proportional to the standard deviation. Like in the first algorithm, the task is to determine the level of wavelet decomposition at which the minimum standard error is achieved. A feature of both algorithms is an expanded base of discrete wavelets ‒ families of Biorthogonal, Coiflet, Daubechies, Discrete Meyer, Haar, Reverse Biorthogonal, Symlets (106 in total) and threshold functions garotte, garrote, greater, hard, less, soft (6 in total). The model function uses random variables in both algorithms, so the averaging base is used to obtain stable results. Given features of algorithm construction allowed to reveal efficiency of ultrasonic signal filtering on the first algorithm presented in the form of oscilloscopic images. The use of a separate threshold for limiting the number of detail coefficients for each level of discrete wavelet decomposition using the given wavelet base and threshold functions has reduced the filtering error.