{"title":"Numerical study of transition process in different zones of a compressor cascade channel","authors":"Xiang Li, Q. Zheng, Hefei Li, Wei Yan, B. Jiang","doi":"10.1515/tjj-2022-0084","DOIUrl":null,"url":null,"abstract":"Abstract The complex vortex structure compressor leads to the problem that the transition model is insufficient in predicting the flow instability of the compressor. In this paper, the rectangular cascade of compressor of different turning-angle conditions is taken as the object, and the transition characteristics on the end wall and the blade surface of the compressor cascade are in comparison by the method of large eddy simulation/LES. The effects of the horseshoe vortex and the separation bubble over the compressor cascade on the transition process are emphatically discussed. By analyzing characteristic parameters of the vortex structure, it is found that the separated transitional flow corresponds to multiple separations-and reattachments of the shedding vortex, and is affected by the cross-flow transition and the separate-transition. Finally, by discussing the instability of the separation line, reattachment line and the cross-flow inflection point of the separated transitional flow, it reveals that the transient disturbance caused by the vortex motion is an important reason affecting the prediction accuracy of the transition model.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2022-0084","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The complex vortex structure compressor leads to the problem that the transition model is insufficient in predicting the flow instability of the compressor. In this paper, the rectangular cascade of compressor of different turning-angle conditions is taken as the object, and the transition characteristics on the end wall and the blade surface of the compressor cascade are in comparison by the method of large eddy simulation/LES. The effects of the horseshoe vortex and the separation bubble over the compressor cascade on the transition process are emphatically discussed. By analyzing characteristic parameters of the vortex structure, it is found that the separated transitional flow corresponds to multiple separations-and reattachments of the shedding vortex, and is affected by the cross-flow transition and the separate-transition. Finally, by discussing the instability of the separation line, reattachment line and the cross-flow inflection point of the separated transitional flow, it reveals that the transient disturbance caused by the vortex motion is an important reason affecting the prediction accuracy of the transition model.
期刊介绍:
The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines.
The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.