Effect of free boundary on the performance of single expansion nozzle

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE International Journal of Turbo & Jet-Engines Pub Date : 2023-05-15 DOI:10.1515/tjj-2023-0034
Dakshina Murthy Inturi, Lovaraju Pinnam, Ramachandra Raju Vegesna
{"title":"Effect of free boundary on the performance of single expansion nozzle","authors":"Dakshina Murthy Inturi, Lovaraju Pinnam, Ramachandra Raju Vegesna","doi":"10.1515/tjj-2023-0034","DOIUrl":null,"url":null,"abstract":"Abstract Effect of free boundary on the flow field characteristics of a single expansion nozzle has been studied experimentally and computationally. The single expansion nozzles studied in this investigation are a convergent-divergent nozzle of rectangular cross-section with convergent-divergent wall on one side and a flat wall on the opposite side, and an identical convergent-divergent ramp with its top open to atmosphere. The studies have been carried out at nozzle pressure ratios 2, 3, 4 and 5. The results show that the single expansion nozzle with wall boundary is able to deliver the flow with Mach number around 1.5, at nozzle pressure ratios of 4 and 5 even with the single expansion. The nozzle with free boundary, the wall static pressure is appreciably lower than that of nozzle with closed boundary and the exit Mach number is 1.5 for NPR 4 and 1.75 for NPR 5. That is, at the exit, the single expansion nozzle with free boundary delivers higher Mach number compared to single expansion nozzle with wall boundary for NPR 5.","PeriodicalId":50284,"journal":{"name":"International Journal of Turbo & Jet-Engines","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbo & Jet-Engines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tjj-2023-0034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Effect of free boundary on the flow field characteristics of a single expansion nozzle has been studied experimentally and computationally. The single expansion nozzles studied in this investigation are a convergent-divergent nozzle of rectangular cross-section with convergent-divergent wall on one side and a flat wall on the opposite side, and an identical convergent-divergent ramp with its top open to atmosphere. The studies have been carried out at nozzle pressure ratios 2, 3, 4 and 5. The results show that the single expansion nozzle with wall boundary is able to deliver the flow with Mach number around 1.5, at nozzle pressure ratios of 4 and 5 even with the single expansion. The nozzle with free boundary, the wall static pressure is appreciably lower than that of nozzle with closed boundary and the exit Mach number is 1.5 for NPR 4 and 1.75 for NPR 5. That is, at the exit, the single expansion nozzle with free boundary delivers higher Mach number compared to single expansion nozzle with wall boundary for NPR 5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自由边界对单膨胀喷嘴性能的影响
通过实验和计算研究了自由边界对单膨胀喷管流场特性的影响。本文所研究的单膨胀喷管是一种截面为矩形、一侧为会聚-发散壁面、另一侧为平壁面的会聚-发散喷管,具有相同的顶板向大气开放的会聚-发散喷管。研究是在喷嘴压力比为2、3、4和5的情况下进行的。结果表明,单膨胀带壁面边界喷管在单膨胀压力比为4和5时也能输出马赫数在1.5左右的流动。自由边界喷管的壁面静压明显低于封闭边界喷管,出口马赫数为1.5,出口马赫数为1.75。即在出口处,自由边界单膨胀喷管比壁面边界单膨胀喷管提供更高的马赫数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Turbo & Jet-Engines
International Journal of Turbo & Jet-Engines 工程技术-工程:宇航
CiteScore
1.90
自引率
11.10%
发文量
36
审稿时长
6 months
期刊介绍: The Main aim and scope of this Journal is to help improve each separate components R&D and superimpose separated results to get integrated systems by striving to reach the overall advanced design and benefits by integrating: (a) Physics, Aero, and Stealth Thermodynamics in simulations by flying unmanned or manned prototypes supported by integrated Computer Simulations based on: (b) Component R&D of: (i) Turbo and Jet-Engines, (ii) Airframe, (iii) Helmet-Aiming-Systems and Ammunition based on: (c) Anticipated New Programs Missions based on (d) IMPROVED RELIABILITY, DURABILITY, ECONOMICS, TACTICS, STRATEGIES and EDUCATION in both the civil and military domains of Turbo and Jet Engines. The International Journal of Turbo & Jet Engines is devoted to cutting edge research in theory and design of propagation of jet aircraft. It serves as an international publication organ for new ideas, insights and results from industry and academic research on thermodynamics, combustion, behavior of related materials at high temperatures, turbine and engine design, thrust vectoring and flight control as well as energy and environmental issues.
期刊最新文献
Effect of inlet diameter on the flow structure and performance for aluminum-based water-jet engine Multi-objective optimization of the aerodynamic performance of butterfly-shaped film cooling holes in rocket thrust chamber Simple model of turbine-based combined cycle propulsion system and smooth mode transition Experimental study on flow field and combustion characteristics of V-gutter and integrated flameholders Research on performance seeking control of turbofan engine in minimum hot spot temperature mode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1