Introduction to this special section: Critical minerals exploration

Q2 Earth and Planetary Sciences Leading Edge Pub Date : 2023-04-01 DOI:10.1190/tle42040236.1
C. Weiss, Alan G. Jones
{"title":"Introduction to this special section: Critical minerals exploration","authors":"C. Weiss, Alan G. Jones","doi":"10.1190/tle42040236.1","DOIUrl":null,"url":null,"abstract":"This special section of The Leading Edge focuses on the issue of critical minerals from the perspective of recent progress in mining exploration and anticipated future needs as the global energy economy transitions to higher use of, and reliance on, renewables. The definition of a “critical mineral” is itself context dependent. For example, minerals such as lithium, nickel, cobalt, manganese, and graphite each are essential to the development of modern, high-efficiency lithium-ion batteries, and any disruptions to these minerals — whether through supply chain issues or raw, geologic access — ultimately impacts the future of this now-pervasive, and increasingly necessary, energy storage technology. Similarly, rare earth elements (REEs) have long been central to the manufacture of permanent magnets, which themselves are key components of wind turbines and electric vehicles, the latter of which account for 14% of global passenger car sales in 2022, up from 9% in the previous year. In the United States alone, the market forecast for electric vehicles is expected to grow to roughly US$137 billion in 2028, up from $24 billion in 2020. Lastly, the more “common” but still “critical” minerals copper and aluminum are the backbone of the rapidly expanding global energy distribution systems upon which our modern society is built.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42040236.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

This special section of The Leading Edge focuses on the issue of critical minerals from the perspective of recent progress in mining exploration and anticipated future needs as the global energy economy transitions to higher use of, and reliance on, renewables. The definition of a “critical mineral” is itself context dependent. For example, minerals such as lithium, nickel, cobalt, manganese, and graphite each are essential to the development of modern, high-efficiency lithium-ion batteries, and any disruptions to these minerals — whether through supply chain issues or raw, geologic access — ultimately impacts the future of this now-pervasive, and increasingly necessary, energy storage technology. Similarly, rare earth elements (REEs) have long been central to the manufacture of permanent magnets, which themselves are key components of wind turbines and electric vehicles, the latter of which account for 14% of global passenger car sales in 2022, up from 9% in the previous year. In the United States alone, the market forecast for electric vehicles is expected to grow to roughly US$137 billion in 2028, up from $24 billion in 2020. Lastly, the more “common” but still “critical” minerals copper and aluminum are the backbone of the rapidly expanding global energy distribution systems upon which our modern society is built.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
本专题导言:关键矿产勘探
《前沿》的这一特别部分从采矿勘探的最新进展和全球能源经济向更高使用和依赖可再生能源过渡的预期未来需求的角度,重点关注关键矿物问题。“关键矿物”的定义本身取决于上下文。例如,锂、镍、钴、锰和石墨等矿物对现代高效锂离子电池的发展都是必不可少的,而对这些矿物的任何破坏——无论是通过供应链问题还是原始的地质获取——最终都会影响到这种现在无处不在、越来越必要的储能技术的未来。同样,稀土元素(ree)长期以来一直是永磁体制造的核心,永磁体本身是风力涡轮机和电动汽车的关键部件,后者在2022年占全球乘用车销量的14%,高于去年的9%。仅在美国,电动汽车的市场预测预计将从2020年的240亿美元增长到2028年的约1370亿美元。最后,更为“常见”但仍然“至关重要”的矿物铜和铝是迅速扩大的全球能源分配系统的支柱,而我们的现代社会正是建立在这一系统之上的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Leading Edge
Leading Edge Earth and Planetary Sciences-Geology
CiteScore
3.10
自引率
0.00%
发文量
180
期刊介绍: THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.
期刊最新文献
Earth Science Week explores innovations in the geosciences Predictive monitoring of urban slope instabilities using geophysics and wireless sensor networks Seismic Soundoff: How to unlock the power of networking Hydrogeologic controls on barrier island geomorphology: Insights from electromagnetic surveys Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1