Multiphysics finite element model for the computation of the electro-mechanical dynamics of a hybrid reluctance actuator

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-06-28 DOI:10.1080/13873954.2020.1766509
F. Cigarini, E. Csencsics, J. Schlarp, S. Ito, G. Schitter
{"title":"Multiphysics finite element model for the computation of the electro-mechanical dynamics of a hybrid reluctance actuator","authors":"F. Cigarini, E. Csencsics, J. Schlarp, S. Ito, G. Schitter","doi":"10.1080/13873954.2020.1766509","DOIUrl":null,"url":null,"abstract":"ABSTRACT In hybrid reluctance actuators, the achievable closed-loop system bandwidth is affected by the eddy currents and hysteresis in the ferromagnetic components and the mechanical resonance modes. Such effects must be accurately predicted to achieve high performance via feedback control. Therefore, a multiphysics electro-mechanical finite element model is proposed in this paper to compute the dynamics of a 2-DoF hybrid reluctance actuator. An electromagnetic simulation is adopted to compute the electromagnetic dynamics and the actuation torque, which is employed as input for a structural dynamic simulation computing the electro-mechanical frequency response function. For model validation, the simulated and measured frequency response plots are compared for two actuators with solid and laminated outer yoke, respectively. In both cases, the model accurately predicts the measurement results, with a maximum relative phase error of 1.7% between the first resonance frequency and 1 kHz and a relative error of 1.5% for the second resonance frequency..","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13873954.2020.1766509","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2020.1766509","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT In hybrid reluctance actuators, the achievable closed-loop system bandwidth is affected by the eddy currents and hysteresis in the ferromagnetic components and the mechanical resonance modes. Such effects must be accurately predicted to achieve high performance via feedback control. Therefore, a multiphysics electro-mechanical finite element model is proposed in this paper to compute the dynamics of a 2-DoF hybrid reluctance actuator. An electromagnetic simulation is adopted to compute the electromagnetic dynamics and the actuation torque, which is employed as input for a structural dynamic simulation computing the electro-mechanical frequency response function. For model validation, the simulated and measured frequency response plots are compared for two actuators with solid and laminated outer yoke, respectively. In both cases, the model accurately predicts the measurement results, with a maximum relative phase error of 1.7% between the first resonance frequency and 1 kHz and a relative error of 1.5% for the second resonance frequency..
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合磁阻作动器机电动力学计算的多物理场有限元模型
摘要在混合磁阻致动器中,可实现的闭环系统带宽受到铁磁元件中的涡流和磁滞以及机械谐振模式的影响。必须准确地预测这种影响,以通过反馈控制实现高性能。因此,本文提出了一个多物理机电有限元模型来计算2-DoF混合磁阻致动器的动力学。采用电磁仿真来计算电磁动力学和驱动转矩,并将其作为计算机电频率响应函数的结构动力学仿真的输入。为了进行模型验证,分别比较了具有实心外轭和层压外轭的两个致动器的模拟和测量频率响应图。在这两种情况下,该模型都准确地预测了测量结果,第一谐振频率和1kHz之间的最大相对相位误差为1.7%,第二谐振频率的相对误差为1.5%。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1