Mengkun Fang , Han Zhang , Yuze Wang , Hui Zhang , Dagan Zhang , Peipei Xu
{"title":"Biomimetic selenium nanosystems for infectious wound healing","authors":"Mengkun Fang , Han Zhang , Yuze Wang , Hui Zhang , Dagan Zhang , Peipei Xu","doi":"10.1016/j.engreg.2023.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>Bacteria-related wound infection and healing have been a major issue for patients and health-care systems for decades. The rise and evolution of effective treatment will result in significant benefits to human beings. In addition to standard antibacterial drugs, a combination of nanoparticles (NPs) and biological membranes is widely applied as a novel antibacterial agent against infectious pathogens. In this paper, the red blood cell membrane-encapsulated selenium nanoparticles (R-SeNPs) were fabricated for infectious wound healing. The stability, the immune evading capability, and the internal circulation time of the R-SeNPs were notably enhanced compared with those of bare selenium nanoparticles (SeNPs). Moreover, <em>in vivo</em> studies demonstrated the outstanding performance of the R-SeNPs in infectious wound healing. The biomimetic selenium nanosystem demonstrated the benefits of the combination of nanotechnology and bionics design and will contribute to wound healing in the future.</p></div>","PeriodicalId":72919,"journal":{"name":"Engineered regeneration","volume":"4 2","pages":"Pages 152-160"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineered regeneration","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666138123000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4
Abstract
Bacteria-related wound infection and healing have been a major issue for patients and health-care systems for decades. The rise and evolution of effective treatment will result in significant benefits to human beings. In addition to standard antibacterial drugs, a combination of nanoparticles (NPs) and biological membranes is widely applied as a novel antibacterial agent against infectious pathogens. In this paper, the red blood cell membrane-encapsulated selenium nanoparticles (R-SeNPs) were fabricated for infectious wound healing. The stability, the immune evading capability, and the internal circulation time of the R-SeNPs were notably enhanced compared with those of bare selenium nanoparticles (SeNPs). Moreover, in vivo studies demonstrated the outstanding performance of the R-SeNPs in infectious wound healing. The biomimetic selenium nanosystem demonstrated the benefits of the combination of nanotechnology and bionics design and will contribute to wound healing in the future.