Numerical Approach on Hybrid PID-AFC Controller using Different Intelligent Tuning Methods to Reduce the Vibration of the Suspended Handle

IF 0.8 4区 工程技术 Q4 ACOUSTICS International Journal of Acoustics and Vibration Pub Date : 2021-03-30 DOI:10.20855/IJAV.2020.25.11713
M. Satar, Wong Jen Nyap, A. Mazlan
{"title":"Numerical Approach on Hybrid PID-AFC Controller using Different Intelligent Tuning Methods to Reduce the Vibration of the Suspended Handle","authors":"M. Satar, Wong Jen Nyap, A. Mazlan","doi":"10.20855/IJAV.2020.25.11713","DOIUrl":null,"url":null,"abstract":"This paper focusses on the study of vibration attenuations for suspended handle models that are generated from power tools using an intelligent active force control (AFC) tuning strategy. Four types of control schemes are comparatively evaluated in suppressing the vibration of the handle, such as proportional-integral-derivative (PID), PID-AFC-crude approximation (AFCCA), PID-AFC-fuzzy logic (AFCFL) and PID-AFC-iterative learning method (AFCILM) control schemes. In all control schemes, the estimated counter force is generated from the actuating force and appropriate estimated mass M* that has been intelligently tuned to counter the system disturbances. The disturbances are modelled based on the power tools vibration (i.e., internal disturbance) and uncertainties during the operation (i.e., external disturbances). The study shows that the AFCCA scheme demonstrates the best performance when the M(CL) is tuned at 0.04 kg. For the AFCFL control scheme, the best response is obtained for the membership function of trapezoidal shape with M(FL) of 0.0403 kg, while for AFCILM control scheme, the best response is achieved when M(ILM) is tuned to 0.04 kg, with both parameters (A and B) set at 0.6. Overall, PID-AFCCA scheme shows the best performances for all of the case studies, followed by PID-AFCFL and PID-AFCILM. The findings of this study can benefit the power tool manufacturers and provide the basis of effectively intelligent controller design for the power tools application.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"26 1","pages":"28-40"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/IJAV.2020.25.11713","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focusses on the study of vibration attenuations for suspended handle models that are generated from power tools using an intelligent active force control (AFC) tuning strategy. Four types of control schemes are comparatively evaluated in suppressing the vibration of the handle, such as proportional-integral-derivative (PID), PID-AFC-crude approximation (AFCCA), PID-AFC-fuzzy logic (AFCFL) and PID-AFC-iterative learning method (AFCILM) control schemes. In all control schemes, the estimated counter force is generated from the actuating force and appropriate estimated mass M* that has been intelligently tuned to counter the system disturbances. The disturbances are modelled based on the power tools vibration (i.e., internal disturbance) and uncertainties during the operation (i.e., external disturbances). The study shows that the AFCCA scheme demonstrates the best performance when the M(CL) is tuned at 0.04 kg. For the AFCFL control scheme, the best response is obtained for the membership function of trapezoidal shape with M(FL) of 0.0403 kg, while for AFCILM control scheme, the best response is achieved when M(ILM) is tuned to 0.04 kg, with both parameters (A and B) set at 0.6. Overall, PID-AFCCA scheme shows the best performances for all of the case studies, followed by PID-AFCFL and PID-AFCILM. The findings of this study can benefit the power tool manufacturers and provide the basis of effectively intelligent controller design for the power tools application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用不同智能整定方法的PID-AFC混合控制器降低悬挂手柄振动的数值方法
本文重点研究了使用智能主动力控制(AFC)调谐策略由电动工具生成的悬挂手柄模型的振动衰减。比较评价了四种控制方案对手柄振动的抑制效果,如比例积分微分(PID)、PID AFC粗逼近(AFCCA)、PID-AFC模糊逻辑(AFCFL)和PID-AFC迭代学习法(AFCILM)控制方案。在所有的控制方案中,估计的反作用力是由致动力和适当的估计质量M*产生的,该质量已被智能地调节以对抗系统扰动。扰动是基于电动工具振动(即内部扰动)和操作过程中的不确定性(即外部扰动)建模的。研究表明,当M(CL)调谐到0.04 kg时,AFCCA方案表现出最佳性能。对于AFCFL控制方案,当M为0.0403 kg时,梯形隶属函数获得最佳响应,而对于AFCILM控制方案,M(ILM)调谐到0.04kg时,当参数(A和B)均设置为0.6时,获得最佳响应。总体而言,PID-AFCCA方案在所有案例研究中表现出最佳性能,其次是PID-AFCFL和PID-AFCILM。本研究结果可为电动工具制造商提供参考,并为电动工具应用提供有效的智能控制器设计依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Acoustics and Vibration
International Journal of Acoustics and Vibration ACOUSTICS-ENGINEERING, MECHANICAL
CiteScore
1.60
自引率
10.00%
发文量
0
审稿时长
12 months
期刊介绍: The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world. Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email. IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out. Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model. In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay. The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.
期刊最新文献
Surge Motion Passive Control of TLP with Double Horizontal Tuned Mass Dampers Numerical and Experimental Evaluation of Hydrodynamic Bearings Applied to a Jeffcott Test Bench Experimental and Numerical Investigation on the Flow-Induced Interior Noise Based on Pellicular Analysis Application of Statistical Energy Analysis (SEA) in Estimating Acoustic Response of Panels With Non-Uniform Mass Distribution Railways: An Acoustical Point of View
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1