Data sharing in energy systems

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2023-06-01 DOI:10.1016/j.adapen.2023.100132
Jianxiao Wang , Feng Gao , Yangze Zhou , Qinglai Guo , Chin-Woo Tan , Jie Song , Yi Wang
{"title":"Data sharing in energy systems","authors":"Jianxiao Wang ,&nbsp;Feng Gao ,&nbsp;Yangze Zhou ,&nbsp;Qinglai Guo ,&nbsp;Chin-Woo Tan ,&nbsp;Jie Song ,&nbsp;Yi Wang","doi":"10.1016/j.adapen.2023.100132","DOIUrl":null,"url":null,"abstract":"<div><p>Big data has been advocated as a dominant driving force to unleash the great waves of the next-generation industrial revolution. While the ever-increasing proliferation of heterogeneous data contributes to a more sustainable energy system, considerable challenges remain for breaking down the barrier of data sharing across monopolistic sectors and fully exploiting data asset value in a trustworthy environment. Here, we focus on a global aspiration and interest regarding the challenges, techniques, and prospects of data sharing in energy systems. In this paper, a conceptual framework for data sharing is designed, in which we introduce the commodity attribute of data assets and explain the bottlenecks of data trading. Two critical issues, i.e., right confirmation and privacy protection, are then systematically reviewed, which provide a fundamental guarantee for credible data openness. A detailed data market is conceived by elaborating on market bids, data asset valuation and pricing strategy, and game-based clearing. Finally, we conduct a discussion about some low-hanging fruit of data sharing in energy systems.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"10 ","pages":"Article 100132"},"PeriodicalIF":13.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792423000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

Abstract

Big data has been advocated as a dominant driving force to unleash the great waves of the next-generation industrial revolution. While the ever-increasing proliferation of heterogeneous data contributes to a more sustainable energy system, considerable challenges remain for breaking down the barrier of data sharing across monopolistic sectors and fully exploiting data asset value in a trustworthy environment. Here, we focus on a global aspiration and interest regarding the challenges, techniques, and prospects of data sharing in energy systems. In this paper, a conceptual framework for data sharing is designed, in which we introduce the commodity attribute of data assets and explain the bottlenecks of data trading. Two critical issues, i.e., right confirmation and privacy protection, are then systematically reviewed, which provide a fundamental guarantee for credible data openness. A detailed data market is conceived by elaborating on market bids, data asset valuation and pricing strategy, and game-based clearing. Finally, we conduct a discussion about some low-hanging fruit of data sharing in energy systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
能源系统中的数据共享
大数据被认为是引领新一代工业革命浪潮的主导力量。虽然异构数据的不断增加有助于建立一个更可持续的能源系统,但在打破垄断部门之间数据共享的障碍,并在可信赖的环境中充分利用数据资产价值方面仍然存在相当大的挑战。在这里,我们关注全球对能源系统数据共享的挑战、技术和前景的期望和兴趣。本文设计了一个数据共享的概念框架,在此框架中引入数据资产的商品属性,并解释了数据交易的瓶颈。然后对权利确认和隐私保护这两个关键问题进行了系统论述,为可信的数据公开提供了根本保障。详细的数据市场是通过详细阐述市场出价、数据资产估值和定价策略以及基于游戏的清算来构想的。最后,我们对能源系统数据共享中一些容易实现的成果进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts Hydrogen production via solid oxide electrolysis: Balancing environmental issues and material criticality MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1