{"title":"Dynamically responsive photonic metal–organic frameworks","authors":"Heqi Zheng, Lin Zhang, Yuanjing Cui, G. Qian","doi":"10.1117/1.ap.5.5.054001","DOIUrl":null,"url":null,"abstract":". Different from single and static photonic materials, dynamically responsive materials possess numerous advantages, such as being multifunctional, dynamically responsive, and able to provide multiple channels within spatially limited platforms, thus exhibiting great potential for application in the color-on-demand areas, including imaging, optical displays, anticounterfeiting, and encoding. Photonic functional metal – organic frameworks (MOFs), with highly designable framework structures and varieties of optical functional building units, possess broad research and application prospects in the field of photonics, which make it possible to design a promising platform with multifunctional and integrated photonic performance. In this review, beyond the preparation strategies of stimuli-responsive photonic MOFs, we also summarize the stimuli-responsive photonic MOFs regarding several most representative types of external stimuli (such as light, gas, pressure, and polarization). As shown, external stimulation endows the stimuli-responsive photonic MOFs with intriguing regulatable photonic properties: intensive and tunable emission, multiphoton-excitable luminescence, non-linear optical, circularly polarized luminescence, lasing, etc. Furthermore, their advanced representative applications, such as information encryption and anticounterfeiting display, biological imaging, chemosensing, and others, are also reviewed. The challenges are proposed and the prospects are addressed.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":" ","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.ap.5.5.054001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
. Different from single and static photonic materials, dynamically responsive materials possess numerous advantages, such as being multifunctional, dynamically responsive, and able to provide multiple channels within spatially limited platforms, thus exhibiting great potential for application in the color-on-demand areas, including imaging, optical displays, anticounterfeiting, and encoding. Photonic functional metal – organic frameworks (MOFs), with highly designable framework structures and varieties of optical functional building units, possess broad research and application prospects in the field of photonics, which make it possible to design a promising platform with multifunctional and integrated photonic performance. In this review, beyond the preparation strategies of stimuli-responsive photonic MOFs, we also summarize the stimuli-responsive photonic MOFs regarding several most representative types of external stimuli (such as light, gas, pressure, and polarization). As shown, external stimulation endows the stimuli-responsive photonic MOFs with intriguing regulatable photonic properties: intensive and tunable emission, multiphoton-excitable luminescence, non-linear optical, circularly polarized luminescence, lasing, etc. Furthermore, their advanced representative applications, such as information encryption and anticounterfeiting display, biological imaging, chemosensing, and others, are also reviewed. The challenges are proposed and the prospects are addressed.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.