Anne Gieseler, Reyk Hillert, Andreas Krusche, K. Zacher
{"title":"Theme 5 Human cell biology and pathology","authors":"Anne Gieseler, Reyk Hillert, Andreas Krusche, K. Zacher","doi":"10.1080/21678421.2019.1646993","DOIUrl":null,"url":null,"abstract":"Background: The delay from onset of the first symptoms to a definite ALS diagnosis depends also on the elusiveness of the initial clinical manifestations. The lack of disease-specific biomarkers to detect early pathology when ALS is supposed complicates the situation. This latency reduces the therapeutic time frame, in which neuron-rescuing strategies exert their greatest chance to work. Various biomarkers are currently promised, but none of them are specific enough to allow monitoring of disease progression. This, as well as the heterogeneity of the disease concerning clinical onset pattern and survival rates, makes difficult the correct stratification of patients into clinical trials, masking the potential positive outcome in some patients.Objective: Our main objective is to establish and test an early diagnostic tool based on microscopic immune cell monitoring of ALS patients' blood samples by using the Toponome Imaging System (TIS).Methods: TIS is based on automatically controlled microscopic device involving conjugated dye-tag incubation, protein-tag-dye-imaging, and tag-dye bleaching (1). This leads to the collection of at least 21 cycle images of fixated peripheral blood mononuclear cells (PBMCs) isolated from freshly drawn blood of ALS patients and healthy \"control\" donors. Resulting data sets contain combinatorial molecular information about the spatial protein network, called toponome. The PBMC toponome architectures are quantitatively analyzed as a threshold-binary code with 1 = protein is present and 0 = protein is absent.Results: Preliminary screening data of PBMCs from 4 ALS patients reveal a subpopulation of lymphocytes expressing a specific surface protein pattern, called \"ALS toponome\". These aberrant T cells could not be found in blood samples of controls. We observe that the number of these cells correlate with the ALS progression rate of patients, supporting the conclusion that these cells may be causal for the disease.Discussion and conclusion: Although these findings open up a potential strategy to detect early ALS disease and to monitor disease progression, a statistical analysis with many more patients, as well as data based differentiation to other neurodegenerative diseases, is mandatory. A clinical trial initiated by our faceALS foundation with at least 60 patients classified in three subsets (1. control, 2. ALS, and 3. Multiple Sclerosis (MS)) and in close cooperation with leading ALS centres in Germany is still in progress. The detection of specific and/or aberrant immune cells in blood samples of ALS patients may provide a key to understand disease onset and progression, could be used for the \"staging\" of disease, and contribute to effective therapy options.","PeriodicalId":7740,"journal":{"name":"Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration","volume":"20 1","pages":"188 - 205"},"PeriodicalIF":2.5000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/21678421.2019.1646993","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/21678421.2019.1646993","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: The delay from onset of the first symptoms to a definite ALS diagnosis depends also on the elusiveness of the initial clinical manifestations. The lack of disease-specific biomarkers to detect early pathology when ALS is supposed complicates the situation. This latency reduces the therapeutic time frame, in which neuron-rescuing strategies exert their greatest chance to work. Various biomarkers are currently promised, but none of them are specific enough to allow monitoring of disease progression. This, as well as the heterogeneity of the disease concerning clinical onset pattern and survival rates, makes difficult the correct stratification of patients into clinical trials, masking the potential positive outcome in some patients.Objective: Our main objective is to establish and test an early diagnostic tool based on microscopic immune cell monitoring of ALS patients' blood samples by using the Toponome Imaging System (TIS).Methods: TIS is based on automatically controlled microscopic device involving conjugated dye-tag incubation, protein-tag-dye-imaging, and tag-dye bleaching (1). This leads to the collection of at least 21 cycle images of fixated peripheral blood mononuclear cells (PBMCs) isolated from freshly drawn blood of ALS patients and healthy "control" donors. Resulting data sets contain combinatorial molecular information about the spatial protein network, called toponome. The PBMC toponome architectures are quantitatively analyzed as a threshold-binary code with 1 = protein is present and 0 = protein is absent.Results: Preliminary screening data of PBMCs from 4 ALS patients reveal a subpopulation of lymphocytes expressing a specific surface protein pattern, called "ALS toponome". These aberrant T cells could not be found in blood samples of controls. We observe that the number of these cells correlate with the ALS progression rate of patients, supporting the conclusion that these cells may be causal for the disease.Discussion and conclusion: Although these findings open up a potential strategy to detect early ALS disease and to monitor disease progression, a statistical analysis with many more patients, as well as data based differentiation to other neurodegenerative diseases, is mandatory. A clinical trial initiated by our faceALS foundation with at least 60 patients classified in three subsets (1. control, 2. ALS, and 3. Multiple Sclerosis (MS)) and in close cooperation with leading ALS centres in Germany is still in progress. The detection of specific and/or aberrant immune cells in blood samples of ALS patients may provide a key to understand disease onset and progression, could be used for the "staging" of disease, and contribute to effective therapy options.
期刊介绍:
Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration is an exciting new initiative. It represents a timely expansion of the journal Amyotrophic Lateral Sclerosis in response to the clinical, imaging pathological and genetic overlap between ALS and frontotemporal dementia. The expanded journal provides outstanding coverage of research in a wide range of issues related to motor neuron diseases, especially ALS (Lou Gehrig’s disease) and cognitive decline associated with frontotemporal degeneration. The journal also covers related disorders of the neuroaxis when relevant to these core conditions.