{"title":"Detection of 3D face masks with thermal infrared imaging and deep learning techniques","authors":"M. Kowalski, Krzysztof Mierzejewski","doi":"10.4302/plp.v13i2.1091","DOIUrl":null,"url":null,"abstract":"Biometric systems are becoming more and more efficient due to increasing performance of algorithms. These systems are also vulnerable to various attacks. Presentation of falsified identity to a biometric sensor is one the most urgent challenges for the recent biometric recognition systems. Exploration of specific properties of thermal infrared seems to be a comprehensive solution for detecting face presentation attacks. This letter presents outcome of our study on detecting 3D face masks using thermal infrared imaging and deep learning techniques. We demonstrate results of a two-step neural network-featured method for detecting presentation attacks. Full Text: PDF ReferencesS.R. Arashloo, J. Kittler, W. Christmas, \"Face Spoofing Detection Based on Multiple Descriptor Fusion Using Multiscale Dynamic Binarized Statistical Image Features\", IEEE Trans. Inf. Forensics Secur. 10, 11 (2015). CrossRef A. Anjos, M.M. Chakka, S. Marcel, \"Motion-based counter-measures to photo attacks inface recognition\", IET Biometrics 3, 3 (2014). CrossRef M. Killioǧlu, M. Taşkiran, N. Kahraman, \"Anti-spoofing in face recognition with liveness detection using pupil tracking\", Proc. SAMI IEEE, (2017). CrossRef A. Asaduzzaman, A. Mummidi, M.F. Mridha, F.N. Sibai, \"Improving facial recognition accuracy by applying liveness monitoring technique\", Proc. ICAEE IEEE, (2015). CrossRef M. Kowalski, \"A Study on Presentation Attack Detection in Thermal Infrared\", Sensors 20, 14 (2020). CrossRef C. Galdi, et al, \"PROTECT: Pervasive and useR fOcused biomeTrics bordEr projeCT - a case study\", IET Biometrics 9, 6 (2020). CrossRef D.A. Socolinsky, A. Selinger, J. Neuheisel, \"Face recognition with visible and thermal infrared imagery\", Comput. Vis Image Underst. 91, 1-2 (2003) CrossRef L. Sun, W. Huang, M. Wu, \"TIR/VIS Correlation for Liveness Detection in Face Recognition\", Proc. CAIP, (2011). CrossRef J. Seo, I. Chung, \"Face Liveness Detection Using Thermal Face-CNN with External Knowledge\", Symmetry 2019, 11, 3 (2019). CrossRef A. George, Z. Mostaani, D Geissenbuhler, et al., \"Biometric Face Presentation Attack Detection With Multi-Channel Convolutional Neural Network\", IEEE Trans. Inf. Forensics Secur. 15, (2020). CrossRef S. Ren, K. He, R. Girshick, J. Sun, \"Proceedings of IEEE Conference on Computer Vision and Pattern Recognition\", Proc. CVPR IEEE 39, (2016). CrossRef K. He, X. Zhang, S. Ren, J. Sun, \"Deep Residual Learning for Image Recognition\", Proc. CVPR, (2016). CrossRef K. Mierzejewski, M. Mazurek, \"A New Framework for Assessing Similarity Measure Impact on Classification Confidence Based on Probabilistic Record Linkage Model\", Procedia Manufacturing 44, 245-252 (2020). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v13i2.1091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
Biometric systems are becoming more and more efficient due to increasing performance of algorithms. These systems are also vulnerable to various attacks. Presentation of falsified identity to a biometric sensor is one the most urgent challenges for the recent biometric recognition systems. Exploration of specific properties of thermal infrared seems to be a comprehensive solution for detecting face presentation attacks. This letter presents outcome of our study on detecting 3D face masks using thermal infrared imaging and deep learning techniques. We demonstrate results of a two-step neural network-featured method for detecting presentation attacks. Full Text: PDF ReferencesS.R. Arashloo, J. Kittler, W. Christmas, "Face Spoofing Detection Based on Multiple Descriptor Fusion Using Multiscale Dynamic Binarized Statistical Image Features", IEEE Trans. Inf. Forensics Secur. 10, 11 (2015). CrossRef A. Anjos, M.M. Chakka, S. Marcel, "Motion-based counter-measures to photo attacks inface recognition", IET Biometrics 3, 3 (2014). CrossRef M. Killioǧlu, M. Taşkiran, N. Kahraman, "Anti-spoofing in face recognition with liveness detection using pupil tracking", Proc. SAMI IEEE, (2017). CrossRef A. Asaduzzaman, A. Mummidi, M.F. Mridha, F.N. Sibai, "Improving facial recognition accuracy by applying liveness monitoring technique", Proc. ICAEE IEEE, (2015). CrossRef M. Kowalski, "A Study on Presentation Attack Detection in Thermal Infrared", Sensors 20, 14 (2020). CrossRef C. Galdi, et al, "PROTECT: Pervasive and useR fOcused biomeTrics bordEr projeCT - a case study", IET Biometrics 9, 6 (2020). CrossRef D.A. Socolinsky, A. Selinger, J. Neuheisel, "Face recognition with visible and thermal infrared imagery", Comput. Vis Image Underst. 91, 1-2 (2003) CrossRef L. Sun, W. Huang, M. Wu, "TIR/VIS Correlation for Liveness Detection in Face Recognition", Proc. CAIP, (2011). CrossRef J. Seo, I. Chung, "Face Liveness Detection Using Thermal Face-CNN with External Knowledge", Symmetry 2019, 11, 3 (2019). CrossRef A. George, Z. Mostaani, D Geissenbuhler, et al., "Biometric Face Presentation Attack Detection With Multi-Channel Convolutional Neural Network", IEEE Trans. Inf. Forensics Secur. 15, (2020). CrossRef S. Ren, K. He, R. Girshick, J. Sun, "Proceedings of IEEE Conference on Computer Vision and Pattern Recognition", Proc. CVPR IEEE 39, (2016). CrossRef K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition", Proc. CVPR, (2016). CrossRef K. Mierzejewski, M. Mazurek, "A New Framework for Assessing Similarity Measure Impact on Classification Confidence Based on Probabilistic Record Linkage Model", Procedia Manufacturing 44, 245-252 (2020). CrossRef
由于算法性能的提高,生物识别系统变得越来越高效。这些系统也容易受到各种攻击。向生物识别传感器显示伪造的身份是当前生物识别系统面临的最紧迫的挑战之一。探索热红外的具体性质似乎是一个全面的解决方案,以检测人脸呈现攻击。这封信介绍了我们使用热红外成像和深度学习技术检测3D口罩的研究结果。我们展示了用于检测表示攻击的两步神经网络特征方法的结果。全文:PDF参考文献。陈晓明,“基于多描述子融合的人脸欺骗检测方法”,中国科学院学报(自然科学版)《法医安全》10,11(2015)。张晓明,张晓明,张晓明,“基于动作的人脸识别算法研究”,生物识别学报,33(2014)。CrossRef M. Killioǧlu, M. ta kiran, N. Kahraman,“基于瞳孔跟踪的人脸识别中的反欺骗”,Proc. SAMI IEEE,(2017)。陈晓明,陈晓明,陈晓明,“基于动态监测技术的人脸识别技术研究”,中国生物医学工程学报,(2015)。CrossRef M. Kowalski,“基于热红外的呈现攻击检测研究”,传感器,2014(2020)。CrossRef C. Galdi等,“保护:普及和以用户为中心的生物识别边界项目-案例研究”,IET生物识别,6(2020)。[CrossRef] A. Socolinsky, A. Selinger, J. Neuheisel,“可见光和热红外图像的人脸识别”,计算机学报。孙磊,黄伟,吴明,“基于TIR/ Vis相关性的人脸识别”,中国视觉科学,(2011)。CrossRef J. Seo, I. Chung,“基于外部知识的热人脸- cnn的人脸活动性检测”,《对称》,2019,11,3(2019)。陈建军,张建军,张建军,等。基于多通道卷积神经网络的人脸识别攻击检测方法[j] .中文信息学报。信息取证安全15,(2020)。[交叉参考]任淑娟,何凯,孙俊,“计算机视觉与模式识别”,计算机视觉与模式识别,vol . 39,(2016)。[交叉参考]何凯,张晓明,任树生,孙军,“基于深度残差学习的图像识别”,CVPR,(2016)。陈晓明,“基于概率记录关联模型的产品分类置信度评估方法研究”,中国机械工程学报,34(4),344 - 344(2020)。CrossRef