Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC npj Flexible Electronics Pub Date : 2023-09-01 DOI:10.1038/s41528-023-00275-y
Weiyi Liu, Huanyu Cheng, Xiufeng Wang
{"title":"Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis","authors":"Weiyi Liu, Huanyu Cheng, Xiufeng Wang","doi":"10.1038/s41528-023-00275-y","DOIUrl":null,"url":null,"abstract":"As sweat biomarker levels are continuously changing over metabolism and daily activities, pathological and physiological processes can be dynamically analyzed by wearable devices. The colorimetric skin-interfaced microfluidic devices that do not have external circuit modules exhibit enhanced deformability with a small footprint. However, it is difficult to achieve sampling over time and self-feedback for closed-loop systems. This review summarizes recent advances in microfluidic valves for biofluid management and chrono-sampling, as well as active triggers in microfluidics self-feedback. After enumerating the current limitations in temporal resolution and reliability, we further point out a few potential feasible strategies for future developments.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-9"},"PeriodicalIF":12.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-023-00275-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-023-00275-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As sweat biomarker levels are continuously changing over metabolism and daily activities, pathological and physiological processes can be dynamically analyzed by wearable devices. The colorimetric skin-interfaced microfluidic devices that do not have external circuit modules exhibit enhanced deformability with a small footprint. However, it is difficult to achieve sampling over time and self-feedback for closed-loop systems. This review summarizes recent advances in microfluidic valves for biofluid management and chrono-sampling, as well as active triggers in microfluidics self-feedback. After enumerating the current limitations in temporal resolution and reliability, we further point out a few potential feasible strategies for future developments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于按需汗液分析的皮肤界面比色微流控装置
由于汗液中的生物标志物水平会随着新陈代谢和日常活动而不断变化,因此可穿戴设备可对病理和生理过程进行动态分析。无外部电路模块的皮肤比色微流控设备具有更强的可变形性,且占地面积小。然而,闭环系统很难实现随时间采样和自我反馈。本综述总结了用于生物流体管理和计时采样的微流体阀门以及微流体自反馈主动触发器的最新进展。在列举了目前在时间分辨率和可靠性方面的局限性之后,我们进一步指出了未来发展的一些潜在可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
期刊最新文献
Kinetic liquid metal synthesis of flexible 2D conductive oxides for multimodal wearable sensing Autonomous self-healing in a stretchable polybutadiene-based urethane and eutectic gallium indium conductive composite Tailoring threshold voltage of R2R printed SWCNT thin film transistors for realizing 4 bit ALU Flash synthesis of high-performance and color-tunable copper(I)-based cluster scintillators for efficient dynamic X-ray imaging Full textile-based body-coupled electrical stimulation for wireless, battery-free, and wearable bioelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1