Li Chen, Fayuan Wang, Zhiqing Zhang, Herong Chao, Haoran He, Weifang Hu, Yifeng Zeng, Chengjiao Duan, Ji Liu, Linchuan Fang
{"title":"Influences of arbuscular mycorrhizal fungi on crop growth and potentially toxic element accumulation in contaminated soils: A meta-analysis","authors":"Li Chen, Fayuan Wang, Zhiqing Zhang, Herong Chao, Haoran He, Weifang Hu, Yifeng Zeng, Chengjiao Duan, Ji Liu, Linchuan Fang","doi":"10.1080/10643389.2023.2183700","DOIUrl":null,"url":null,"abstract":"Abstract Soil pollution from potentially toxic elements (PTEs) is a serious environmental issue worldwide that affects agricultural safety and human health. Arbuscular mycorrhizal fungi (AMF), as ecosystem engineers, can alleviate PTE toxicity in crop plants. However, the comprehensive effects of AMF on crop performance in PTE-contaminated soils have not yet been recognized globally. Here, a meta-analysis of 153 studies with 3213 individual observations was conducted to evaluate the effects of AMF on the growth and PTE accumulation of five staple crops (wheat, rice, maize, soybean, and sorghum) in contaminated soils. Our results demonstrated that AMF had strong positive effects on the shoot and root biomass. This is because AMF can effectively alleviate oxidative damage induced by PTEs by stimulating photosynthesis, promoting nutrition, and activating non-enzymatic and enzymatic defense systems in crop plants. AMF also decreased shoot PTE accumulation by 23.6% and increased root PTE accumulation by 0.8%, demonstrating that AMF effectively inhibited the PTE transfer and uptake by crop shoot. Meanwhile, AMF-mediated effects on shoot PTE accumulation were weaker in soils with pH > 7.5. Overall, this global survey has essential implications on the ability of AMF to enhance crop performance in PTE-contaminated soils and provides insights into the guidelines for safe agricultural production worldwide. Graphical abstract","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1795 - 1816"},"PeriodicalIF":11.4000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2183700","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 15
Abstract
Abstract Soil pollution from potentially toxic elements (PTEs) is a serious environmental issue worldwide that affects agricultural safety and human health. Arbuscular mycorrhizal fungi (AMF), as ecosystem engineers, can alleviate PTE toxicity in crop plants. However, the comprehensive effects of AMF on crop performance in PTE-contaminated soils have not yet been recognized globally. Here, a meta-analysis of 153 studies with 3213 individual observations was conducted to evaluate the effects of AMF on the growth and PTE accumulation of five staple crops (wheat, rice, maize, soybean, and sorghum) in contaminated soils. Our results demonstrated that AMF had strong positive effects on the shoot and root biomass. This is because AMF can effectively alleviate oxidative damage induced by PTEs by stimulating photosynthesis, promoting nutrition, and activating non-enzymatic and enzymatic defense systems in crop plants. AMF also decreased shoot PTE accumulation by 23.6% and increased root PTE accumulation by 0.8%, demonstrating that AMF effectively inhibited the PTE transfer and uptake by crop shoot. Meanwhile, AMF-mediated effects on shoot PTE accumulation were weaker in soils with pH > 7.5. Overall, this global survey has essential implications on the ability of AMF to enhance crop performance in PTE-contaminated soils and provides insights into the guidelines for safe agricultural production worldwide. Graphical abstract
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.